Submitter Info.txt Please Do Not Reply To This Email. Public Comments on Developing an Unified Intercarrier Compensation:======= Title: Developing an Unified Intercarrier Compensation FR Document Number: 2011-04399 Legacy Document ID: RIN: Publish Date: 3/2/2011 12:00:00 AM Submitter Info: First Name: Donna Last Name: Descoteaux Mailing Address: P.O. Box 684 City: San Luis Country: United States State or Province: CO Postal Code: 81152 Organization Name: null This is a comment and a plea. According to the latest data, 5-7% of the population are what is know as electrosensitive. This is a condition recognized under the ADA. (See attached CO proclamation and research documents.) To force everyone to use cell phones, would greatly damage my health and the health of many, many others. Please, please (here is the plea part) DO NOT TAKE OUR LAND LINES AWAY!!! Besides the loss of communication that would cause, the further spreading of the cell phone network would severely impact my health. Please review the attached documents and protect the health and well being of millions of Americans!! # France National Library gives-up WiFi. Paris 07 04 2008 - The management of the famous France National Library (BNF) just decides a moratorium on the Wi-Fi hot spot giving access to internet that were supposed to be installed by a private corporation on the entire area. The given arguments being the research of the service quality, but also the precaution principle to be applied in order to avoid the exposure of its staff and of all visitors to of electromagnetic fields 2,45 GHz radiation risks. This decision is justified by an argument that is supported by scientific literature which proves genotoxic effects from Wi-Fi waves, specially: - An american research study from Professor S. Lee and al. at the Chicago University about genetic alterations in human cells exposed to radiofrequencies fields of 2, 45 GHz (Wi-Fi frequency). [Scientific Study: NCBI.Gov - PubMed] France National Library (by figures): - BNF consists of 15 millions of varied works in books, manuscripts, prints, drawings, photos, and so on ... in a 4 towers buildings of 200 000 m² for a more than 1 million of persons/year frequent visitors with a staff of ≥ 2500 assistants and 254 M €/year budget. -The scientific Consortium BioInitiative report with conclusions of an immediate revision of the actual Standards of exposure to electromagnetic radiations of the population, [in progress International Petition] as well as the Clermont-Ferrand Blaise Pascal University research study. Arnaud Beaufort, director general manager confirms the moratorium with this terms: « ...we wait the results of a current study and we give time to choose the most adapted technology. » In a paper article from 'The Parisien' dated April 4. 2008, "The BNF gives up Wi-Fi in turn", the BNF management confirms this Wi-Fi cancellation, by adding that the reason are multiple: "the choice of wired connections were necessary because it's also the only that allows an very high data rate delivery transmission". For the mass researchers who go regularly in the BNF this option is important as it's expected there will be a connection for around 50 % of the seats by the end of 2008. Room of France National Library in Paris. The fact remains that BNF that is one of the France biggest Institution is as well a modern symbol in management, with a consequence that this decision impact is going well over this Paris prestigious place. It's a spectacular and symbolic put in question of the Wi-Fi connection installation as a precaution measure. It's also a first great new (premiere) due to its scale that demonstrates that the wired connection alternative is a credible solution to Wi-Fi specially also appropriate for all establishments open to public and above all for National Education. This decision comes just after the moratorium of some libraries of Paris City where Wi-Fi is questioned following some staff personnel having uneasy feelings. The movement seems to spread out inexorably as the Genevieve Library staff is also asking with a petition to disconnect the WI-Fi terminals and the sanitary and security committee of the Censier-Sorbonne University in Paris just decided to disconnect a Wi-Fi hot spot. #### **Associated Documents:** - Press Release of SUPAP- FSU: "France National Library is giving up Wi-Fi" - By Amy Worthington. "The Radiations Poisoning of America" # Honorary Proclamation # BILL RITTER, JR. GOVERNOR # ELECTROMAGNETIC SENSITIVITY AWARENESS MONTH May 2009 WHEREAS, people of all ages in Colorado and throughout the world have developed the illness of Electromagnetic Sensitivity (EMS) as a result of global electromagnetic pollution; and WHEREAS, Electromagnetic Sensitivity is a painful chronic illness of hypersensitive reactions to electromagnetic radiations for which there is no known cure; and WHEREAS, the symptoms of EMS include, dermal changes, acute numbness and tingling, dermatitis, flushing, headaches, arrhythmia, muscular weakness, tinnitus, malaise, gastric problems, nausea, visual disturbances, severe neurological, respiratory, speech problems, and numerous other physiological symptoms; and WHEREAS, Electromagnetic Sensitivity is recognized by the Americans with Disabilities Act, the US Access Board and numerous commissions; and WHEREAS, this illness may be preventable through the reduction or avoidance of electromagnetic radiations, in both indoor and outdoor environments and by conducting further scientific research; Therefore, I, Bill Ritter, Jr., Governor of Colorado, do hereby proclaim May 2009 #### ELECTROMAGNETIC SENSITIVITY AWARENESS MONTH in the State of Colorado. GIVEN under my hand and the Executive Seal of the State of Colorado, this fifteenth day of May, 2009 Bill RA gr. Bill Ritter, Jr. Governor Release Date: August 31, 2007 # BioInitiative Report: A Rationale for a Biologically-based Public Exposure Standard for Electromagnetic Fields (ELF and RF) #### **Organizing Committee:** Carl Blackman, USA Martin Blank, USA Michael Kundi, Austria Cindy Sage, USA #### Participants: David Carpenter, USA Zoreh Davanipour, USA David Gee, Denmark Lennart Hardell, Sweden Olle Johansson, Sweden Henry Lai, USA Kjell Hansson Mild, Sweden Eugene Sobel, USA Zhengping Xu and Guangdin Chen, China # Research Associate S. Amy Sage, USA ## **PREFACE** The Organizing Committee thanks the participants of the BioIniative Working Group for their integrity and intellectual courage in dealing with this controversial and important topic; and for devoting the time and energy to produce their chapters. The information and conclusions in each chapter are the responsibilities of the authors of that chapter. The Group has produced what the authors hope will be a benchmark for good science and public health policy planning. It documents bioeffects, adverse health effects and public health conclusions about impacts of non-ionizing radiation (electromagnetic fields including extremely-low frequency ELF-EMF and radiofrequency/microwave or RF-EMF fields). Societal decisions about this body of science have global implications. Good public health policy depends on acting soon enough, but not without cause, and with enough information to guide intelligent actions. To a great degree, it is the definition of the standard of evidence used to judge the scientific reports that shapes this debate. Disagreement about when the evidence is sufficient to take action has more to do with the outcome of various reviews and standard-setting proceedings than any other single factor. Whatever "standard of evidence" is selected to assess the strength of the science will deeply influence the outcome of decisions on public policy. We are at a critical juncture in this world-wide debate. The answers lie not only in the various branches of science; but necessarily depend on the involvement of public health and policy professionals, the regulatory, legal and environmental protection sectors, and the public sector. This has been a long-term collaboration of international scientists employing a multi-disciplinary approach to problem assessment and solving. Our work has necessarily relied on tools and approaches across the physical, biological and engineering sciences; and those of the environmental scientist and public health professional. Only when taken together can we see the whole and begin to take steps that can prevent possible harm and protect future generations. Signed: Abard Fargant Signed: Ciny Sugar David Carpenter, MD Co-Editor BioInitiative Report Cindy Sage, MA Co-Editor BioInitiative Report # BioInitiative: A Rationale for a Biologically-based Exposure Standard for Electromagnetic Radiation SECTION i. PREFACE SECTION ii: TABLE OF CONTENTS SECTION 1: SUMMARY FOR THE PUBLIC AND CONCLUSIONS Ms. Sage SECTION 2: STATEMENT OF THE PROBLEM Ms. Sage SECTION 3: THE EXISTING PUBLIC EXPOSURE STANDARDS Ms. Sage SECTION 4: EVIDENCE FOR INADEQUACY OF THE STANDARDS Ms. Sage SECTION 5: EVIDENCE FOR EFFECTS ON GENE AND PROTEIN EXPRESSION (Transcriptomic and Proteomic Research) Dr. Xu and Dr. Chen SECTION 6: EVIDENCE FOR GENOTOXIC EFFECTS – RFR AND ELF **DNA DAMAGE** Dr. Lai SECTION 7: EVIDENCE FOR STRESS RESPONSE (STRESS PROTEINS) Dr. Blank SECTION 8: EVIDENCE FOR EFFECTS ON IMMUNE FUNCTION Dr. Johansson SECTION 9: EVIDENCE FOR EFFECTS ON NEUROLOGY AND BEHAVIOR Dr. Lai SECTION 10: EVIDENCE FOR BRAIN TUMORS AND ACOUSTIC **NEUROMAS** Dr. Hardell, Dr. Mild and Dr. Kundi SECTION 11: EVIDENCE FOR CHILDHOOD CANCERS (LEUKEMIA0 Dr. Kundi SECTION 12: MAGNETIC FIELD EXPOSURE: MELATONIN PRODUCTION; ALZHEIMER'S DISEASE; BREAST **CANCER** Dr. Davanipour and Dr. Sobel SECTION 13: EVIDENCE FOR BREAST CANCER PROMOTION (Melatonin links in laboratory and cell studies) Ms. Sage SECTION 14: EVIDENCE FOR DISRUPTION BY THE MODULATING SIGNAL Dr. Blackman SECTION 15 EVIDENCE BASED ON EMF MEDICAL THERAPEUTICS Ms. Sage SECTION 16: THE PRECAUTIONARY PRINCIPLE Mr.
Gee SECTION 17: KEY SCIENTIFIC EVIDENCE AND PUBLIC HEALTH POLICY RECOMMENDATIONS Dr. Carpenter and Ms. Sage SECTION 18: LIST OF PARTICIPANTS AND AFFILIATIONS SECTION 19: GLOSSARY OF TERMS AND ABBREVIATIONS SECTION 20: APPENDIX - Ambient ELF and RF levels Average residential and occupational exposures SECTION 21: ACKNOWLEDGEMENTS # **SECTION 1** # **SUMMARY FOR THE PUBLIC** Cindy Sage, MA Sage Associates USA Prepared for the BioInitiative Working Group August 2007 ## **Table of Contents** # I. Summary for the Public - A. Introduction - B. Purpose of the Report - C. Problems with Existing Public Health Standards (Safety Limits) # II. Summary of the Science - A. Evidence for Cancer (Childhood Leukemia and Adult Cancers) - B. Changes in the Nervous System and Brain Function - C. Effect on Genes (DNA) - D. Effects on Stress Proteins (Heat Shock Proteins) - E. Effects on the Immune System - F. Plausible Biological Mechanisms - G. Another Way of Looking at EMFs: Therapeutic Uses # III. EMF Exposure and Prudent Public Health Planning ## IV. Recommended Actions - A. Defining new exposure standards for ELF - B. Defining preventative actions for reduction in RF exposures ## V. Conclusions ## VI. References #### I. SUMMARY FOR THE PUBLIC #### A. Introduction You cannot see it, taste it or smell it, but it is one of the most pervasive environmental exposures in industrialized countries today. Electromagnetic radiation (EMR) or electromagnetic fields (EMFs) are the terms that broadly describe exposures created by the vast array of wired and wireless technologies that have altered the landscape of our lives in countless beneficial ways. However, these technologies were designed to maximize energy efficiency and convenience; not with biological effects on people in mind. Based on new studies, there is growing evidence among scientists and the public about possible health risks associated with these technologies. Human beings are bioelectrical systems. Our hearts and brains are regulated by internal bioelectrical signals. Environmental exposures to artificial EMFs can interact with fundamental biological processes in the human body. In some cases, this can cause discomfort and disease. Since World War II, the background level of EMF from electrical sources has risen exponentially, most recently by the soaring popularity of wireless technologies such as cell phones (two billion and counting in 2006), cordless phones, WI-FI and WI-MAX networks. Several decades of international scientific research confirm that EMFs are biologically active in animals and in humans, which could have major public health consequences. In today's world, everyone is exposed to two types of EMFs: (1) extremely low frequency electromagnetic fields (ELF) from electrical and electronic appliances and power lines and (2) radiofrequency radiation (RF) from wireless devices such as cell phones and cordless phones, cellular antennas and towers, and broadcast transmission towers. In this report we will use the term EMFs when referring to all electromagnetic fields in general; and the terms ELF and RF when referring to the specific type of exposure. They are both types of non-ionizing radiation, which means that they do not have sufficient energy to break off electrons from their orbits around atoms and ionize (charge) the atoms, as do x-rays, CT scans, and other forms of ionizing radiation. A glossary and definitions are provided in Section 18 to assist you. Some handy definitions you will probably need when reading about ELF and RF in this summary section (the language for measuring it) are shown with the references for this section. #### B. Purpose of the Report This report has been written by 14 (fourteen) scientists, public health and public policy experts to document the scientific evidence on electromagnetic fields. Another dozen outside reviewers have looked at and refined the Report. The purpose of this report is to assess scientific evidence on health impacts from electromagnetic radiation below current public exposure limits and evaluate what changes in these limits are warranted now to reduce possible public health risks in the future. Not everything is known yet about this subject; but what is clear is that the existing public safety standards limiting these radiation levels in nearly every country of the world look to be thousands of times too lenient. Changes are needed. New approaches are needed to educate decision-makers and the public about sources of exposure and to find alternatives that do not pose the same level of possible health risks, while there is still time to make changes. A working group composed of scientists, researchers and public health policy professionals (The BioInitiative Working Group) has joined together to document the information that must be considered in the international debate about the adequacy (or inadequacy) of existing public exposure standards. This Report is the product of an international research and public policy initiative to give an overview of what is known of biological effects that occur at low-intensity EMFs exposures (for both radiofrequency radiation RF and power-frequency ELF, and various forms of combined exposures that are now known to be bioactive). The Report examines the research and current standards and finds that these standards are far from adequate to protect public health. Recognizing that other bodies in the United States, United Kingdom, Australia, many European Union and eastern European countries as well as the World Health Organization are actively debating this topic, the BioInitiative Working Group has conducted a independent science and public health policy review process. The report presents solid science on this issue, and makes recommendations to decision-makers and the public. Conclusions of the individual authors, and overall conclusions are given in Table 2-1 (BioInitiative Overall Summary Chart). Eleven (11) chapters that document key scientific studies and reviews identifying low-intensity effects of electromagnetic fields have been written by members of the BioInitiative Working Group. Section 16 and 17 have been prepared by public health and policy experts. These sectoins discusses the standard of evidence which should be applied in public health planning, how the scientific information should be evaluated in the context of prudent public health policy, and identifies the basis for taking precautionary and preventative actions that are proportionate to the knowledge at hand. They also evaluate the evidence for ELF that leads to a recommendation for new public safety limits (not precautionary or preventative actions, as need is demonstrated). Other scientific review bodies and agencies have reached different conclusions than we have by adopting standards of evidence so unreasonably high as to exclude any conclusions likely to lead to new public safety limits. Some groups are actually recommending a relaxation of the existing (and inadequate) standards. Why is this happening? One reason is that exposure limits for ELF and RF are developed by bodies of scientists and engineers that belong to professional societies who have traditionally developed recommendations; and then government agencies have adopted those recommendations. The standard-setting processes have little, if any, input from other stakeholders outside professional engineering and closely-related commercial interests. Often, the industry view of allowable risk and proof of harm is most influential, rather than what public health experts would determine is acceptable. #### Main Reasons for Disagreement among Experts - 1) Scientists and public health policy experts use very different definitions of the standard of evidence used to judge the science, so they come to different conclusions about what to do. Scientists do have a role, but it is not exclusive and other opinions matter. - 2) We are all talking about essentially the same scientific studies, but use a different way of measuring when "enough is enough" or "proof exists". - 3) Some experts keep saying that all studies have to be consistent (turn out the same way every time) before they are comfortable saying an effect exists. - 4) Some experts think that it is enough to look only at short-term, acute effects. - 5) Other experts say that it is imperative we have studies over longer time (showing the effects of chronic exposures) since that is what kind of world we live in. - 6) Some experts say that everyone, including the very young, the elderly, pregnant women, and people with illnesses have to be considered others say only the average person (or in the case of RF, a six-foot tall man) matter. - 7) There is no unexposed population, making it harder to see increased risk of diseases. - 8) The lack of consensus about a single biological mechanism of action. - 9) The strength of human epidemiological studies reporting risks from ELF and RF exposures, but animal studies don't show a strong toxic effect. - 10) Vested interests have a substantial influence on the health debate. #### **Public Policy Decisions** Safety limits for public exposure to EMFs need to be developed on the basis of interaction among not only scientists, but also public health experts, public policy makers and the general public. "In principle, the assessment of the evidence should combine with judgment based on other societal values, for example, costs and benefits, acceptability of risks, cultural preferences, etc. and result in sound and effective decision-making. Decisions on these matters are eventually taken as a function of the views, values and interests of the stakeholders participating in the process, whose opinions are then weighed depending on several factors. Scientific evidence perhaps carries, or should carry, relatively heavy weight, but grants no exclusive status; decisions will be evidence-based but will also be based on other factors." (1) The clear consensus of the
BioInitiative Working Group members is that the existing public safety limits are inadequate for both ELF and RF. These proposals reflect the evidence that a positive assertion of safety with respect to chronic exposure to low-intensity levels of ELF and RF cannot be made. As with many other standards for environmental exposures, these proposed limits may not be totally protective, but more stringent standards are not realistic at the present time. Even a small increased risk for cancer and neurodegenerative diseases translates into an enormous public health consequence. Regulatory action for ELF and preventative actions for RF are warranted at this time to reduce exposures and inform the public of the potential for increased risk; at what levels of chronic exposure these risks may be present; and what measures may be taken to reduce risks. #### C. Problems with Existing Public Health Standards (Safety Limits) Today's public exposure limits for telecommunications are based on the presumption that heating of tissue (for RF) or induced electric currents in the body (for ELF) are the only concerns when living organisms are exposed to RF. These exposures can create tissue heating that is well known to be harmful in even very short-term doses. As such, thermal limits do serve a purpose. For example, for people whose occupations require them to work around radar facilities or RF heat-sealers, or for people who install and service wireless antenna tower, thermally-based limits are necessary to prevent damage from heating (or, in the case of power-frequency ELF from induced current flow in tissues). In the past, scientists and engineers developed exposure standards for electromagnetic radiation based what we now believe are faulty assumptions that the right way to measure how much non-ionizing energy humans can tolerate (how much exposure) without harm is to measure only the heating of tissue (RF) or induced currents in the body (ELF). In the last few decades, it has been established beyond any reasonable doubt that bioeffects and some adverse health effects occur at far lower levels of RF and ELF exposure where no heating (or induced currents) occurs at all; some effects are shown to occur at several hundred thousand times below the existing public safety limits where heating is an impossibility. It appears it is the INFORMATION conveyed by electromagnetic radiation (rather than heat) that causes biological changes - some of these biological changes may lead to loss of wellbeing, disease and even death. Effects occur at non-thermal or low-intensity exposure levels thousands of times below the levels that federal agencies say should keep the public safe. For many new devices operating with wireless technologies, the devices are exempt from any regulatory standards. The existing standards have been proven to be inadequate to control against harm from low-intensity, chronic exposures, based on any reasonable, independent assessment of the scientific literature. It means that an entirely new basis (a biological basis) for new exposure standards is needed. New standards need to take into account what we have learned about the effects of ELF and RF (all non-ionizing electromagnetic radiation and to design new limits based on biologically-demonstrated effects that are important to proper biological function in living organisms. It is vital to do so because the explosion of new sources has created unprecedented levels of artificial electromagnetic fields that now cover all but remote areas of the habitable space on earth. Midcourse corrections are needed in the way we accept, test and deploy new technologies that expose us to ELF and RF in order to avert public health problems of a global nature. Recent opinions by experts have documented deficiencies in current exposure standards. There is widespread discussion that thermal limits are outdated, and that biologically-based exposure standards are needed. Section 4 describes concerns expressed by WHO, 2007 in its ELF Health Criteria Monograph; the SCENIHR Report, 2006 prepared for the European Commission; the UK SAGE Report, 2007; the Health Protection Agency, United Kingdom in 2005; the NATO Advanced Research Workshop in 2005; the US Radiofrequency Interagency Working Group in 1999; the US Food and Drug Administration in 2000 and 2007; the World Health Organization in 2002; the International Agency for Cancer Research (IARC, 2001), the United Kingdom Parliament Independent Expert Group Report on Mobile Phones – Stewart Report, 2000) and others. A pioneer researcher, the late Dr. Ross Adey, in his last publication in Bioelectromagnetic Medicine (P. Roche and M. Markov, eds. 2004) concluded: "There are major unanswered questions about possible health risks that may arise from exposures to various man-made electromagnetic fields where these human exposures are intermittent, recurrent, and may extend over a significant portion of the lifetime of the individual." "Epidemiological studies have evaluated ELF and radiofrequency fields as possible risk factors for human health, with historical evidence relating rising risks of such factors as progressive rural electrification, and more recently, to methods of electrical power distribution and utilization in commercial buildings. Appropriate models describing these bioeffects are based in nonequilibrium thermodynamics, with nonlinear electrodynamics as an integral feature. Heating models, based in equilibrium thermodynamics, fail to explain an impressive new frontier of much greater significance. Though incompletely understood, tissue free radical interactions with magnetic fields may extend to zero field levels." (2) There may be no lower limit at which exposures do not affect us. Until we know if there is a lower limit below which bioeffects and adverse health impacts do not occur, it is unwise from a public health perspective to continue "business-as-usual" deploying new technologies that increase ELF and RF exposures, particularly involuntary exposures. #### II. SUMMARY OF THE SCIENCE #### A. Evidence for Cancer #### 1. Childhood Leukemia The evidence that power lines and other sources of ELF are consistently associated with higher rates of childhood leukemia has resulted in the International Agency for Cancer Research (an arm of the World Health Organization) to classify ELF as a Possible Human Carcinogen (in the Group 2B carcinogen list). Leukemia is the most common type of cancer in children. #### There is little doubt that exposure to ELF causes childhood leukemia. The exposure levels for increased risk are quite low – just above background or ambient levels and much lower than current exposure limits. The existing ICNIRP limit is 1000 mG (904 mG in the US) for ELF. Increased risk for childhood leukemia starts at levels almost one thousand times below the safety standard. Leukemia risks for young boys are reported in one study to double at only 1.4 mG and above (7) Most other studies combine older children with younger children (0 to 16 years) so that risk levels do not reach statistical significance until exposure levels reach 2 mG or 3 mG. Although some reviews have combined studies of childhood leukemia in ways that indicate the risk level starts at 4 mG and above; this does not reflect many of the studies reporting elevated risks at the lower exposure levels of 2 mG and 3 mG. #### 2. Other Childhood Cancers Other childhood cancers have been studied, including brain tumors, but not enough work has been done to know if there are risks, how high these risks might be or what exposure levels might be associated with increased risks. The lack of certainty about other childhood cancers should not be taken to signal the "all clear"; rather it is a lack of study. The World Health Organization ELF Health Criteria Monograph No 322 (2007) says that other childhood cancers "cannot be ruled out". (8) There is some evidence that other childhood cancers may be related to ELF exposure but not enough studies have been done. Several recent studies provide even stronger evidence that ELF is a risk factor for childhood leukemia and cancers later in life. In the first study (9), children who were recovering in high- ELF environments had poorer survival rates (a 450% increased risk of dying if the ELF fields were 3 mG and above). In the second study, children who were recovering in 2 mG and above ELF environments were 300% more likely to die than children exposed to 1 mG and below. In this second study, children recovering in ELF environments between 1 and 2 mG also had poorer survival rates, where the increased risk of dying was 280%. (10) These two studies give powerful new information that ELF exposures in children can be harmful at levels above even 1 mG. The third study looked what risks for cancer a child would have later in life, if that child was raised in a home within 300 meters of a high-voltage electric power line. (11) For children who were raised for their first five years of life within 300 meters, they have a life-time risk that is 500% higher for developing some kinds of cancers. Children who have leukemia and are in recovery have poorer survival rates if their ELF exposure at home (or where they are recovering) is between 1mG and 2 mG in one study; over 3 mG in another study. Given the extensive study of childhood leukemia risks associated with ELF, and the relatively consistent findings that exposures in the 2 mG to 4 mG range are associated with increased risk to children, a 1 mG limit for habitable space is recommended for new construction. While it is difficult and expensive to retrofit existing habitable space to a 1 mG level, and is also recommended as a desirable target for existing residences and places where children and pregnant women may spend prolonged periods of time. New ELF public exposure limits are warranted at this time, given the existing scientific evidence and need for public health policy
intervention and prevention. #### 3. Brain Tumors and Acoustic Neuromas Radiofrequency radiation from cell phone and cordless phone exposure has been linked in more than one dozen studies to increased risk for brain tumors and/or acoustic neuromas (a tumor in the brain on a nerve related to our hearing). People who have used a <u>cell phone</u> for ten years or more have higher rates of malignant brain tumor and acoustic neuromas. It is worse if the cell phone has been used primarily on one side of the head. For brain tumors, people who have used a cell phone for 10 years or longer have a 20% increase in risk (when the cell phone is used on both sides of the head). For people who have used a cell phone for 10 years or longer predominantly on one side of the head, there is a 200% increased risk of a brain tumor. This information relies on the combined results of many brain tumor/cell phone studies taken together (a meta-analysis of studies). People who have used a <u>cordless phone</u> for ten years or more have higher rates of malignant brain tumor and acoustic neuromas. It is worse if the cordless phone has been used primarily on one side of the head. The risk of brain tumor (high-grade malignant glioma) from cordless phone use is 220% higher (both sides of the head). The risk from use of a cordless phone is 470% higher when used mostly on only one side of the head. For acoustic neuromas, there is a 30% increased risk with cell phone use at ten years and longer; and a 240% increased risk of acoustic neuroma when the cell phone is used mainly on one side of the head. These risks are based on the combined results of several studies (a meta-analysis of studies). For use of cordless phones, the increased risk of acoustic neuroma is three-fold higher (310%) when the phone is mainly used on one side of the head. The current standard for exposure to the emissions of <u>cell phones and cordless phones</u> is not safe considering studies reporting long-term brain tumor and acoustic neuroma risks. Other indications that radiofrequency radiation can cause brain tumors comes from exposures to low-level RF other than from cell phone or cordless phone use. Studies of people who are exposed in their work (occupational exposure) show higher brain tumor rates as well. Kheifets (1995) reported a 10% to 20% increased risk of brain cancer for those employed in electrical occupations. This meta-analysis surveyed 29 published studies of brain cancer in relation to occupational EMFs exposure or work in electrical occupations. (6). The evidence for a link between other sources of RF exposure like working at a job with EMFs exposure is consistent with a moderately elevated risk of developing brain tumors. #### 4. Other Adult Cancers There are multiple studies that show statistically significant relationships between occupational exposure and leukemia in adults (see Chapter 11), in spite of major limitations in the exposure assessment. A very recent study by Lowenthal et al. (2007) investigated leukemia in adults in relation to residence near to high-voltage power lines. While they found elevated risk in all adults living near to the high voltage power lines, they found an OR of 3.23 (95% CI = 1.26-8.29) for individuals who spent the first 15 years of life within 300 m of the power line. This study provides support for two important conclusions: adult leukemia is also associated with EMF exposure, and exposure during childhood increases risk of adult disease. A significant excess risk for adult brain tumors in electrical workers and those adults with occupational EMF exposure was reported in a meta-analysis (review of many individual studies) by Kheifets et al., (1995). This is about the same size risk for lung cancer and secondhand smoke (US DHHS, 2006). A total of 29 studies with populations from 12 countries were included in this meta-analysis. The relative risk was reported as 1.16 (CI = 1.08 - 1.24) or a 16% increased risk for all brain tumors. For gliomas, the risk estimate was reported to be 1.39 (1.07 - 1.82) or a 39% increased risk for those in electrical occupations. A second meta-analysis published by Kheifets et al., ((2001) added results of 9 new studies published after 1995. It reported a new pooled estimate (OR = 1.16, 1.08 - 1.01) that showed little change in the risk estimate overall from 1995. The evidence for a relationship between exposure and breast cancer is relatively strong in men (Erren, 2001), and some (by no means all) studies show female breast cancer also to be elevated with increased exposure (see Chapter 12). Brain tumors and acoustic neuromas are more common in exposed persons (see Chapter 10). There is less published evidence on other cancers, but Charles et al. (2003) report that workers in the highest 10% category for EMF exposure were twice as likely to die of prostate cancer as those exposed at lower levels (OR 2.02, 95% CI = 1.34-3.04). Villeneuve et al. (2000) report statistically significant elevations of non-Hodgkin's lymphoma in electric utility workers in relation to EMF exposure, while Tynes et al. (2003) report elevated rates of malignant melanoma in persons living near to high voltage power lines. While these observations need replication, they suggest a relationship between exposure and cancer in adults beyond leukemia. In total the scientific evidence for adult disease associated with EMF exposure is sufficiently strong for adult cancers that preventive steps are appropriate, even if not all reports have shown exactly the same positive relationship. This is especially true since many factors reduce our ability to see disease patterns that might be related to EMF exposure: there is no unexposed population for comparison, for example, and other difficulties in exposure assessment, The evidence for a relationship between EMF exposure and adult cancers and neurodegenerative diseases is sufficiently strong at present to merit preventive actions to reduce EMF exposure. #### 5. Breast Cancer There is rather strong evidence from multiple areas of scientific investigation that ELF is related to breast cancer. Over the last two decades there have been numerous epidemiological studies (studies of human illness) on breast cancer in both men and women, although this relationship remains controversial among scientists. Many of these studies report that ELF exposures are related to increased risk of breast cancer (not all studies report such effects, but then, we do not expect 100% or even 50% consistency in results in science, and do not require it to take reasonable preventative action). The evidence from studies on women in the workplace rather strongly suggests that ELF is a risk factor for breast cancer for women with long-term exposures of 10 mG and higher. Breast cancer studies of people who work in relatively high ELF exposures (10 mG and above) show higher rates of this disease. Most studies of workers who are exposed to ELF have defined high exposure levels to be somewhere between 2 mG and 10 mG; however this kind of mixing of relatively low to relatively high ELF exposure just acts to dilute out real risk levels. Many of the occupational studies group exposures so that the highest group is exposed to 4 mG and above. What this means is that a) few people are exposed to much higher levels and b) illness patterns show up at relatively low ELF levels of 4 mG and above. This is another way of demonstrating that existing ELF limits that are set at 933-1000 mG are irrelevant to the exposure levels reporting increased risks. Laboratory studies that examine human breast cancer cells have shown that ELF exposure between 6 mG and 12 mG can interfere with protective effects of melatonin that fights the growth of these breast cancer cells. For a decade, there has been evidence that human breast cancer cells grow faster if exposed to ELF at low environmental levels. This is thought to be because ELF exposure can reduce melatonin levels in the body. The presence of melatonin in breast cancer cell cultures is known to reduce the growth of cancer cells. The absence of melatonin (because of ELF exposure or other reasons) is known to result in more cancer cell growth. Laboratory studies of animals that have breast cancer tumors have been shown to have more tumors and larger tumors when exposed to ELF and a chemical tumor promoter at the same time. These studies taken together indicate that ELF is a likely risk factor for breast cancer, and that ELF levels of importance are no higher than many people are exposed to at home and at work. A reasonable suspicion of risk exists and is sufficient evidence on which to recommend new ELF limits; and to warrant preventative action. Given the very high lifetime risks for developing breast cancer, and the critical importance of prevention; ELF exposures should be reduced for all people who are in high ELF environments for prolonged periods of time. Reducing ELF exposure is particularly important for people who have breast cancer. The recovery environment should have low ELF levels given the evidence for poorer survival rates for childhood leukemia patients in ELF fields over 2 mG or 3 mG. Preventative action for those who may be at higher risk for breast cancer is also warranted (particularly for those taking tamoxifen as a way to reduce the risk of getting breast cancer, since in addition to reducing the effectiveness of melatonin, ELF exposure may also reduce the effectiveness of tamoxifen at these same low exposure levels). There is no excuse for ignoring the substantial body of evidence we already have that supports an association between breast cancer and ELF exposure; waiting for conclusive evidence is untenable given the enormous costs and societal and personal burdens caused by this disease. Studies of human breast cancer cells and some animal studies show that ELF is likely to be a risk factor for breast cancer. There is supporting evidence for a link between
breast cancer and exposure to ELF that comes from cell and animal studies, as well as studies of human breast cancers. These are just some of the cancer issues to discuss. It may be reasonable now to make the assumption that all cancers, and other disease endpoints might be related to, or worsened by exposures to EMFs (both ELF and RF). If one or more cancers are related, why would not all cancer risks be at issue? It can no longer be said that the current state of knowledge rules out or precludes risks to human health. The enormous societal costs and impacts on human suffering by not dealing proactively with this issue require substantive public health policy actions; and actions of governmental agencies charged with the protection of public health to act on the basis of the evidence at hand. #### B. Changes in the Nervous System and Brain Function Exposure to electromagnetic fields has been studies in connection with Alzheimer's disease, motor neuron disease and Parkinson's disease. (4) These diseases all involve the death of specific neurons and may be classified as neurodegenerative diseases. There is evidence that high levels of amyloid beta are a risk factor for Alzheimer's disease, and exposure to ELF can increase this substance in the brain. There is considerable evidence that melatonin can protect the brain against damage leading to Alzheimer's disease, and also strong evidence that exposure to ELF can reduce melatonin levels. Thus it is hypothesized that one of the body's main protections against developing Alzheimer's disease (melatonin) is less available to the body when people are exposed to ELF. Prolonged exposure to ELF fields could alter calcium (Ca2+) levels in neurons and induce oxidative stress (4). It is also possible that prolonged exposure to ELF fields may stimulate neurons (particularly large motor neurons) into synchronous firing, leading to damage by the buildup of toxins. Evidence for a relationship between exposure and the neurodegenerative diseases, Alzheimer's and amyotrophic lateral sclerosis (ALS), is strong and relatively consistent (see Chapter 12). While not every publication shows a statistically significant relationship between exposure and disease, ORs of 2.3 (95% CI = 1.0-5.1 in Qio et al., 2004), of 2.3 (95% CI = 1.6-3.3 in Feychting et al., 2003) and of 4.0 (95% CI = 1.4-11.7 in Hakansson et al., 2003) for Alzheimer's Disease, and of 3.1 (95% CI = 1.0-9.8 in Savitz et al., 1998) and 2.2 (95% CI = 1.0-4.7 in Hakansson et al., 2003) for ALS cannot be simply ignored. Alzheimer's disease is a disease of the nervous system. There is strong evidence that longterm exposure to ELF is a risk factor for Alzheimer's disease. Concern has also been raised that humans with epileptic disorders could be more susceptible to RF exposure. Low-level RF exposure may be a stressor based on similarities of neurological effects to other known stressors; low-level RF activates both endogenous opioids and other substances in the brain that function in a similar manner to psychoactive drug actions. Such effects in laboratory animals mimic the effects of drugs on the part of the brain that is involved in addiction. Laboratory studies show that the nervous system of both humans and animals is sensitive to ELF and RF. Measurable changes in brain function and behavior occur at levels associated with new technologies including cell phone use. Exposing humans to cell phone radiation can change brainwave activity at levels as low as 0.1 watt per kilogram SAR (W/Kg)*** in comparison to the US allowable level of 1.6 W/Kg and the International Commission for Non-ionizing Radiation Protection (ICNIRP) allowable level of 2.0 W/Kg. It can affect memory and learning. It can affect normal brainwave activity. ELF and RF exposures at low levels are able to change behavior in animals. There is little doubt that electromagnetic fields emitted by cell phones and cell phone use affect electrical activity of the brain. Effects on brain function seem to depend in some cases on the mental load of the subject during exposure (the brain is less able to do two jobs well simultaneously when the same part of the brain is involved in both tasks). Some studies show that cell phone exposure speeds up the brain's activity level; but also that the efficiency and judgment of the brain are diminished at the same time. One study reported that teenage drivers had slowed responses when driving and exposed to cell phone radiation, comparable to response times of elderly people. Faster thinking does not necessarily mean better quality thinking. Changes in the way in which the brain and nervous system react depend very much on the specific exposures. Most studies only look at short-term effects, so the long-term consequences of exposures are not known. Factors that determine effects can depend on head shape and size, the location, size and shape of internal brain structures, thinness of the head and face, hydration of tissues, thickness of various tissues, dialectric constant of the tissues and so on. Age of the individual and state of health also appear to be important variables. Exposure conditions also greatly influence the outcome of studies, and can have opposite results depending on the conditions of exposure including frequency, waveform, orientation of exposure, duration of exposure, number of exposures, any pulse modulation of the signal, and when effects are measured (some responses to RF are delayed). There is large variability in the results of ELF and RF testing, which would be expected based on the large variability of factors that can influence test results. However, it is clearly demonstrated that under some conditions of exposure, the brain and nervous system functions of humans are altered. The consequence of long-term or prolonged exposures have not been thoroughly studied in either adults or in children. The consequence of prolonged exposures to children, whose nervous systems continue to develop until late adolescence, is unknown at this time. This could have serious implications to adult health and functioning in society if years of exposure of the young to both ELF and RF result in diminished capacity for thinking, judgment, memory, learning, and control over behavior. People who are chronically exposed to low-level wireless antenna emissions report symptoms such as problems in sleeping (insomnia), fatigue, headache, dizziness, grogginess, lack of concentration, memory problems, ringing in the ears (tinnitus), problems with balance and orientation, and difficulty in multi-tasking. In children, exposures to cell phone radiation have resulted in changes in brain oscillatory activity during some memory tasks. Although scientific studies as yet have not been able to confirm a cause-and-effect relationship; these complaints are widespread and the cause of significant public concern in some countries where wireless technologies are fairly mature and widely distributed (Sweden, Denmark, France, Germany, Italy, Switzerland, Austria, Greece, Israel). For example, the roll-out of the new 3rd Generation wireless phones (and related community-wide antenna RF emissions in the Netherlands) caused almost immediate public complaints of illness.(5) Conflicting results from those few studies that have been conducted may be based on the difficulty in providing non-exposed environments for testing to compare to environments that are intentionally exposed. People traveling to laboratories for testing are pre-exposed to a multitude of RF and ELF exposures, so they may already be symptomatic prior to actual testing. Also complicating this is good evidence that RF exposures testing behavioral changes show delayed results; effects are observed after termination of RF exposure. This suggests a persistent change in the nervous system that may be evident only after time has passed, so is not observed during a short testing period. The effects of long-term exposure to wireless technologies including emissions from cell phones and other personal devices, and from whole-body exposure to RF transmissions from cell towers and antennas is simply not known yet with certainty. However, the body of evidence at hand suggests that bioeffects and health impacts can and do occur at exquisitely low exposure levels: levels that can be thousands of times below public safety limits. The evidence reasonably points to the potential for serious public health consequences (and economic costs), which will be of global concern with the widespread public use of, and exposure to such emissions. Even a small increase in disease incidence or functional loss of cognition related to new wireless exposures would have a large public health, societal and economic consequences. Epidemiological studies can report harm to health only after decades of exposure, and where large effects can be seen across "average" populations; so these early warnings of possible harm should be taken seriously now by decision-makers. #### C. Effects on Genes (DNA) Cancer risk is related to DNA damage, which alters the genetic blueprint for growth and development. If DNA is damaged (the genes are damaged) there is a risk that these damaged cells will not die. Instead they will continue to reproduce themselves with damaged DNA, and this is one necessary pre-condition for cancer. Reduced DNA repair may also be an important part of this story. When the rate of damage to DNA exceeds the rate at which DNA can be repaired, there is the possibility of retaining mutations and initiating cancer. Studies on how ELF and RF may affect genes and DNA is important, because of the possible link to cancer. Even ten years ago, most people believed that very weak ELF and RF fields could not possibly have any effect at all on DNA and how cells work (or are damaged and cannot do their work properly). The argument was that these weak fields are do not possess enough energy (are not physically strong enough) to cause
damage. However, there are multiple ways we already know about where energy is not the key factor in causing damage. For example, exposure to toxic chemicals can cause damage. Changing the balance of delicate biological processes, including hormone balances in the body, can damage or destroy cells, and cause illness. In fact, many chronic diseases are directly related to this kind of damage that does not require any heating at all. Interference with cell communication (how cells interact) may either cause cancer directly or promote existing cancers to grow faster. Using modern gene-testing techniques will probably give very useful information in the future about how EMFs targets and affects molecules in the body. At the gene level, there is some evidence now that EMFs (both ELF and RF) can cause changes in how DNA works. Laboratory studies have been conducted to see whether (and how) weak EMFs fields can affect how genes and proteins function. Such changes have been seen in some, but not all studies. Small changes in protein or gene expression might be able to alter cell physiology, and might be able to cause later effects on health and well-being. The study of genes, proteins and EMFs is still in its infancy, however, by having some confirmation at the gene level and protein level that weak EMFs exposures do register changes may be an important step in establishing what risks to health can occur. What is remarkable about studies on DNA, genes and proteins and EMFs is that there should be no effect at all if it were true that EMFs is too weak to cause damage. Scientists who believe that the energy of EMFs is insignificant and unlikely to cause harm have a hard time explaining these changes, so are inclined to just ignore them. The trouble with this view is that the effects are occurring. Not being able to explain these effects is not a good reason to consider them imaginary or unimportant. The European research program (REFLEX) documented many changes in normal biological functioning in tests on DNA (3). The significance of these results is that such effects are directly related to the question of whether human health risks might occur, when these changes in genes and DNA happen. This large research effort produced information on EMFs effects from more than a dozen different researchers. Some of the key findings included: "Gene mutations, cell proliferation and apoptosis are caused by or result in altered gene and protein expression profiles. The convergence of these events is required for the development of all chronic diseases." (3) "Genotoxic effects and a modified expression of numerous genes and proteins after EMF exposure could be demonstrated with great certainty." (3) "RF-EMF produced genotoxic effects in fibroblasts, HL-60 cells, granulosa cells of rats and neural progenitor cells derived from mouse embryonic stem cells." (Participants 2, 3 and 4). (3) "Cells responded to RF exposure between SAR levels of 0.3 and 2 W/Kg with a significant increase in single- and double-strand DNA breaks and in micronuclei frequency." (Participants 2, 3 and 4). (3) "In HL-60 cells an increase in intracellular generation of free radicals accompanying RF-EMF exposure could clearly be demonstrated." (Participant 2). (3) "The induced DNA damage was not based on thermal effects and arouses consideration about the environmental safety limits for ELF-EMF exposure." (3) "The effects were clearly more pronounced in cells from older donors, which could point to an age-related decrease of DNA repair efficiency of ELF-EMF induced DNA strand breaks." (3) Both ELF and RF exposures can be considered genotoxic (will damage DNA) under certain conditions of exposure, including exposure levels that are lower than existing safety limits. ## D. Effects on Stress Proteins (Heat Shock Proteins) In nearly every living organism, there is a special protection launched by cells when they are under attack from environmental toxins or adverse environmental conditions. This is called a stress response, and what are produced are stress proteins (also known as heat shock proteins). Plants, animals and bacteria all produce stress proteins to survive environmental stressors like high temperatures, lack of oxygen, heavy metal poisoning, and oxidative stress (a cause of premature aging). We can now add ELF and RF exposures to this list of environmental stressors that cause a physiological stress response. Very low-level ELF and RF exposures can cause cells to produce stress proteins, meaning that the cell recognizes ELF and RF exposures as harmful. This is another important way in which scientists have documented that ELF and RF exposures can be harmful, and it happens at levels far below the existing public safety standards. An additional concern is that if the stress goes on too long, the protective effect is diminished. There is a reduced response if the stress goes on too long, and the protective effect is reduced. This means the cell is less protected against damage, and it is why prolonged or chronic exposures may be quite harmful, even at very low intensities. The biochemical pathway that is activated is the same for ELF and for RF exposures, and it is non-thermal (does not require heating or induced electrical currents, and thus the safety standards based on protection from heating are irrelevant and not protective). ELF exposure levels of only 5 to 10 mG have been shown to activate the stress response genes (Table 2, Section 6). The specific absorption rate or SAR is not the appropriate measure of biological threshold or dose, and should not be used as the basis for a safety standard, since SAR only regulates against thermal damage. #### E. Effects on the Immune System The immune system is another defense we have against invading organisms (viruses, bacteria, and other foreign molecules). It protects us against illness, infectious diseases, and tumor cells. There are many different kinds of immune cells; each type of cell has a particular purpose, and is launched to defend the body against different kinds of exposures that the body determines might be harmful. There is substantial evidence that ELF and RF can cause inflammatory reactions, allergy reactions and change normal immune function at levels allowed by current public safety standards. The body's immune defense system senses danger from ELF and RF exposures, and targets an immune defense against these fields, much like the body's reaction in producing stress proteins. These are additional indicators that very low intensity ELF and RF exposures are a) recognized by cells and b) can cause reactions as if the exposure is harmful. Chronic exposure to factors that increase allergic and inflammatory responses on a continuing basis are likely to be harmful to health. Chronic inflammatory responses can lead to cellular, tissue and organ damage over time. Many chronic diseases are thought to be related to chronic problems with immune system function. The release of inflammatory substances, such as histamine, are well-known to cause skin reactions, swelling, allergic hypersensitivity and other conditions that are normally associated with some kind of defense mechanism. The human immune system is part of a general defense barrier that protects against harmful exposures from the surrounding environment. When the immune system is aggravated by some kind of attack, there are many kinds of immune cells that can respond. Anything that triggers an immune response should be carefully evaluated, since chronic stimulation of the immune system may over time impair the system's ability to respond in the normal fashion. Measurable physiological changes (mast cell increases in the skin, for example that are markers of allergic response and inflammatory cell response) are triggered by ELF and RF at very low intensities. Mast cells, when activated by ELF or RF, will break (degranulate) and release irritating chemicals that cause the symptoms of allergic skin reactions. There is very clear evidence that exposures to ELF and RF at levels associated with cell phone use, computers, video display terminals, televisions, and other sources can cause these skin reactions. Changes in skin sensitivity have been measured by skin biopsy, and the findings are remarkable. Some of these reactions happen at levels equivalent to those of wireless technologies in daily life. Mast cells are also found in the brain and heart, perhaps targets of immune response by cells responding to ELF and RF exposures, and this might account for some of the other symptoms commonly reported (headache, sensitivity to light, heart arrythmias and other cardiac symptoms). Chronic provocation by exposure to ELF and RF can lead to immune dysfunction, chronic allergic responses, inflammatory diseases and ill health if they occur on a continuing basis over time. These clinical findings may account for reports of persons with electrical hypersensitivity, which is a condition where there is intolerance for any level of exposure to ELF and/or RF. Although there is not yet a substantial scientific assessment (under controlled conditions, if that is even possible); anecdotal reports from many countries show that estimates range from 3% to perhaps 5% of populations, and it is a growing problem. Electrical hypersensitivity, like multiple chemical sensitivity, can be disabling and require the affected person to make drastic changes in work and living circumstances, and suffer large economic losses and loss of personal freedom. In Sweden, electrohypersensitivity (EHS) is officially recognized as fully functional impairment (i.e., it is not regarded as a disease – see Section 6, Appendix A). #### F. Plausible Biological Mechanisms Plausible biological mechanisms are already identified that can reasonably account for most biological effects reported for exposure to RF and ELF at low-intensity levels (oxidative stress and DNA damage from free radicals leading to
genotoxicity; molecular mechanisms at very low energies are plausible links to disease, e.g., effect on electron transfer rates linked to oxidative damage, DNA activation linked to abnormal biosynthesis and mutation). It is also important to remember that traditional public health and epidemiological determinations do not require a proven mechanism before inferring a causal link between EMFs exposure and disease (12). Many times, proof of mechanism is not known before wise public health responses are implemented. "Obviously, melatonin's ability to protect DNA from oxidative damage has implications for many types of cancer, including leukemia, considering that DNA damage due to free radicals is believed to be the initial oncostatic event in a majority of human cancers [Cerutti et al., 1994]. In addition to cancer, free radical damage to the central nervous system is a significant component of a variety of neurodegenerative diseases of the aged including Alzheimer's disease and Parkinsonism. In experimental animal models of both of these conditions, melatonin has proven highly effective in forestalling their onset, and reducing their severity [Reiter et al., 2001]." (13) Oxidative stress through the action of free radical damage to DNA is a plausible biological mechanism for cancer and diseases that involve damage from ELF to the central nervous system. #### G. Another Way of Looking at EMFs: Therapeutic Uses Many people are surprised to learn that certain kinds of EMFs treatments actually can heal. These are medical treatments that use EMFs in specific ways to help in healing bone fractures, to heal wounds to the skin and underlying tissues, to reduce pain and swelling, and for other post-surgical needs. Some forms of EMFs exposure are used to treat depression. EMFs have been shown to be effective in treating conditions of disease at energy levels far below current public exposure standards. This leads to the obvious question. How can scientists dispute the harmful effects of EMF exposures while at the same time using forms of EMF treatment that are proven to heal the body? Medical conditions are successfully treated using EMFs at levels below current public safety standards, proving another way that the body recognizes and responds to low-intensity EMF signals. Otherwise, these medical treatments could not work. The FDA has approved EMFs medical treatment devices, so is clearly aware of this paradox. Random exposures to EMFs, as opposed to EMFs exposures done with clinical oversight, could lead to harm just like the unsupervised use of pharmaceutical drugs. This evidence forms a strong warning that indiscriminate EMF exposure is probably a bad idea. No one would recommend that drugs used in medical treatments and prevention of disease be randomly given to the public, especially to children. Yet, random and involuntary exposures to EMFs occur all the time in daily life. The consequence of multiple sources of EMFs exposures in daily life, with no regard to cumulative exposures or to potentially harmful combinations of EMFs exposures means several things. First, it makes it very difficult to do clinical studies because it is almost impossible to find anyone who is not already exposed. Second, people with and without diseases have multiple and overlapping exposures – this will vary from person to person. Just as ionizing radiation can be used to effectively diagnose disease and treat cancer, it is also a cause of cancer under different exposure conditions. Since EMFs are both a cause of disease, and also used for treatment of disease, it is vitally important that public exposure standards reflect our current understanding of the biological potency of EMF exposures, and develop both new public safety limits and measures to prevent future exposures. #### III. EMF EXPOSURE AND PRUDENT PUBLIC HEALTH PLANNING • The scientific evidence is sufficient to warrant regulatory action for ELF; and it is substantial enough to warrant preventative actions for RF. - The standard of evidence for judging the emerging scientific evidence necessary to take action should be proportionate to the impacts on health and well-being - The exposures are widespread. - Widely accepted standards for judging the science are used in this assessment. Public exposure to electromagnetic radiation (power-line frequencies, radiofrequency and microwave) is growing exponentially worldwide. There is a rapid increase in electrification in developing countries, even in rural areas. Most members of society now have and use cordless phones, cellular phones, and pagers. In addition, most populations are also exposed to antennas in communities designed to transmit wireless RF signals. Some developing countries have even given up running land lines because of expense and the easy access to cell phones. Long-term and cumulative exposure to such massively increased RF has no precedent in human history. Furthermore, the most pronounced change is for children, who now routinely spend hours each day on the cell phone. Everyone is exposed to a greater or lesser extent. No one can avoid exposure, since even if they live on a mountain-top without electricity there will likely be exposure to communication-frequency RF exposure. Vulnerable populations (pregnant women, very young children, elderly persons, the poor) are exposed to the same degree as the general population. Therefore it is imperative to consider ways in which to evaluate risk and reduce exposure. Good public health policy requires preventative action proportionate to the potential risk of harm and the public health consequence of taking no action. #### IV. RECOMMENDED ACTIONS #### A. Defining new exposure standards for ELF This chapter concludes that new ELF limits are warranted based on a public health analysis of the overall existing scientific evidence. The public health view is that new ELF limits are needed now. They should reflect environmental levels of ELF that have been demonstrated to increase risk for childhood leukemia, and possibly other cancers and neurological diseases. ELF limits should be set below those exposure levels that have been linked in childhood leukemia studies to increased risk of disease, plus an additional safety factor. It is no longer acceptable to build new power lines and electrical facilities that place people in ELF environments that have been determined to be risky. These levels are in the 2 to 4 milligauss* (mG) range, not in the 10s of mG or 100s of mG. The existing ICNIRP limit is 1000 mG (904 mG in the US) for ELF is outdated and based on faulty assumptions. These limits are can no longer be said to be protective of public health and they should be replaced. A safety buffer or safety factor should also be applied to a new, biologically-based ELF limit, and the conventional approach is to add a safety factor lower than the risk level. While new ELF limits are being developed and implemented, a reasonable approach would be a 1 mG planning limit for habitable space adjacent to all new or upgraded power lines and a 2 mG limit for all other new construction. It is also recommended for that a 1 mG limit be established for existing habitable space for children and/or women who are pregnant (because of the possible link between childhood leukemia and in utero exposure to ELF). This recommendation is based on the assumption that a higher burden of protection is required for children who cannot protect themselves, and who are at risk for childhood leukemia at rates that are traditionally high enough to trigger regulatory action. This situation in particular warrants extending the 1 mG limit to existing occupied space. "Establish" in this case probably means formal public advisories from relevant health agencies. While it is not realistic to reconstruct all existing electrical distribution systems, in the short term; steps to reduce exposure from these existing systems need to be initiated, especially in places where children spend time, and should be encouraged. These limits should reflect the exposures that are commonly associated with increased risk of child hood leukemia (in the 2 to 5 mG range for all children, and over 1.4 mG for children age 6 and younger). Nearly all of the occupational studies for adult cancers and neurological diseases report their highest exposure category is 4 mG and above, so that new ELF limits should target the exposure ranges of interest, and not necessarily higher ranges. Avoiding chronic ELF exposure in schools, homes and the workplace above levels associated with increased risk of disease will also avoid most of the possible bioactive parameters of ELF discussed in the relevant literature. • #### B. Defining preventative actions for reduction in RF exposures Given the scientific evidence at hand (Chapter 17), the rapid deployment of new wireless technologies that chronically expose people to pulsed RF at levels reported to cause bioeffects, which in turn, could reasonably be presumed to lead to serious health impacts, is of public health concern. Section 17 summarizes evidence that has resulted in a public health recommendation that preventative action is warranted to reduce or minimize RF exposures to the public. There is suggestive to strongly suggestive evidence that RF exposures may cause changes in cell membrane function, cell communication, cell metabolism, activation of proto-oncogenes and can trigger the production of stress proteins at exposure levels below current regulatory limits. Resulting effects can include DNA breaks and chromosome aberrations, cell death including death of brain neurons, increased free radical production, activation of the endogenous opioid system, cell stress and premature aging, changes in brain function including memory loss, retarded learning, slower motor function and other performance impairment in children, headaches and fatigue, sleep disorders, neurodegenerative conditions, reduction in melatonin
secretion and cancers (Chapters 5, 6, 7, 8, 9, 10, and 12). As early as 2000, some experts in bioelectromagnetics promoted a 0.1 μ W/cm2 limit (which is 0.614 Volts per meter) for ambient outdoor exposure to pulsed RF, so generally in cities, the public would have adequate protection against involuntary exposure to pulsed radiofrequency (e.g., from cell towers, and other wireless technologies). The Salzburg Resolution of 2000 set a target of 0.1 μ W/cm2 (or 0.614 V/m) for public exposure to pulsed radiofrequency. Since then, there are many credible anecdotal reports of unwellness and illness in the vicinity of wireless transmitters (wireless voice and data communication antennas) at lower levels. Effects include sleep disruption, impairment of memory and concentration, fatigue, headache, skin disorders, visual symptoms (floaters), nausea, loss of appetite, tinnitus, and cardiac problems (racing heartbeat), There are some credible articles from researchers reporting that cell tower -level RF exposures (estimated to be between 0.01 and 0.5 μ W/cm2) produce ill-effects in populations living up to several hundred meters from wireless antenna sites. This information now argues for thresholds or guidelines that are substantially below current FCC and ICNIPR standards for whole body exposure. Uncertainty about how low such standards might have to go to be prudent from a public health standpoint should not prevent reasonable efforts to respond to the information at hand. No lower limit for bioeffects and adverse health effects from RF has been established, so the possible health risks of wireless WLAN and WI-FI systems, for example, will require further research and no assertion of safety at any level of wireless exposure (chronic exposure) can be made at this time. The lower limit for reported human health effects has dropped 100-fold below the safety standard (for mobile phones and PDAs); 1000- to 10,000-fold for other wireless (cell towers at distance; WI-FI and WLAN devices). The entire basis for safety standards is called into question, and it is not unreasonable to question the safety of RF at any level. A cautionary target level for pulsed RF exposures for ambient wireless that could be applied to RF sources from cell tower antennas, WI-FI, WI-MAX and other similar sources is proposed. The recommended cautionary target level is 0.1 microwatts per centimeter squared (μW/cm2)** (or 0.614 Volts per meter or V/m)** for pulsed RF where these exposures affect the general public; this advisory is proportionate to the evidence and in accord with prudent public health policy. A precautionary limit of 0.1 μW/cm2 should be adopted for outdoor, cumulative RF exposure. This reflects the current RF science and prudent public health response that would reasonably be set for pulsed RF (ambient) exposures where people live, work and go to school. This level of RF is experienced as whole-body exposure, and can be a chronic exposure where there is wireless coverage present for voice and data transmission for cell phones, pagers and PDAs and other sources of radiofrequency radiation. An outdoor precautionary limit of 0.1 μW/cm2 would mean an even lower exposure level inside buildings, perhaps as low as 0.01 μW/cm2. Some studies and many anecdotal reports on ill health have been reported at lower levels than this; however, for the present time, it could prevent some of the most disproportionate burdens placed on the public nearest to such installations. Although this RF target level does not preclude further rollout of WI-FI technologies, we also recommend that wired alternatives to WI-FI be implemented, particularly in schools and libraries so that children are not subjected to elevated RF levels until more is understood about possible health impacts. This recommendation should be seen as an interim precautionary limit that is intended to guide preventative actions; and more conservative limits may be needed in the future. Broadcast facilities that chronically expose nearby residents to elevated RF levels from AM, FM and television antenna transmission are also of public health concern given the potential for very high RF exposures near these facilities (antenna farms). RF levels can be in the 10s to several 100's of μ W/cm2 in residential areas within half a mile of some broadcast sites (for example, Lookout Mountain, Colorado and Awbrey Butte, Bend, Oregon). Such facilities that are located in, or expose residential populations and schools to elevated levels of RF will very likely need to be re-evaluated for safety. For emissions from wireless devices (cell phones, personal digital assistant or PDA devices, etc) there is enough evidence for increased risk of brain tumors and acoustic neuromas now to warrant intervention with respect to their use. Redesign of cell phones and PDAs could prevent direct head and eye exposure, for example, by designing new units so that they work only with a wired headset or on speakerphone mode. These effects can reasonably be presumed to result in adverse health effects and disease with chronic and uncontrolled exposures, and children may be particularly vulnerable. The young are also largely unable to remove themselves from such environments. Second-hand radiation, like second-hand smoke is an issue of public health concern based on the evidence at hand. #### V. CONCLUSIONS - We cannot afford 'business as usual" any longer. It is time that planning for new power lines and for new homes, schools and other habitable spaces around them is done with routine provision for low-ELF environments. The business-as-usual deployment of new wireless technologies is likely to be risky and harder to change if society does not make some educated decisions about limits soon. Research must continue to define what levels of RF related to new wireless technologies are acceptable; but more research should not prevent or delay substantive changes today that might save money, lives and societal disruption tomorrow. - New regulatory limits for ELF are warranted. ELF limits should be set below those exposure levels that have been linked in childhood leukemia studies to increased risk of disease, plus an additional safety factor. It is no longer acceptable to build new power lines and electrical facilities that place people in ELF environments that have been determined to be risky (at levels generally at 2 mG and above). • While new ELF limits are being developed and implemented, a reasonable approach would be a 1 mG planning limit for habitable space adjacent to all new or upgraded power lines and a 2 mG limit for all other new construction. It is also recommended for that a 1 mG limit be established for existing habitable space for children and/or women who are pregnant. This recommendation is based on the assumption that a higher burden of protection is required for children who cannot protect themselves, and who are at risk for childhood leukemia at rates that are traditionally high enough to trigger regulatory action. This situation in particular warrants extending the 1 mG limit to existing occupied space. "Establish" in this case probably means formal public advisories from relevant health agencies. - While it is not realistic to reconstruct all existing electrical distributions systems, in the short term; steps to reduce exposure from these existing systems need to be initiated, especially in places where children spend time, and should be encouraged. - A precautionary limit of 0.1 (μW/cm2 (which is also 0.614 Volts per meter) should be adopted for outdoor, cumulative RF exposure. This reflects the current RF science and prudent public health response that would reasonably be set for pulsed RF (ambient) exposures where people live, work and go to school. This level of RF is experienced as whole-body exposure, and can be a chronic exposure where there is wireless coverage present for voice and data transmission for cell phones, pagers and PDAs and other sources of radiofrequency radiation. Some studies and many anecdotal reports on ill health have been reported at lower levels than this; however, for the present time, it could prevent some of the most disproportionate burdens placed on the public nearest to such installations. Although this RF target level does not preclude further rollout of WI-FI technologies, we also recommend that wired alternatives to WI-FI be implemented, particularly in schools and libraries so that children are not subjected to elevated RF levels until more is understood about possible health impacts. This recommendation should be seen as an interim precautionary limit that is intended to guide preventative actions; and more conservative limits may be needed in the future. #### VI. References 1. Martuzzi M. 2005. Science, Policy and the Protectoin of Human Health: A European Perspective. Bioelectromagnetics Supplement 7: S151-156. - 2. Adey, WR. Potential Therapeutic Applications of Nonthermal Electromagnetic Fields: Ensemble Organization of Cells in Tissue as a Factor in Biological Field Sensing. Bioelectromagnetic Medicine. 2004, Rosch PJ and Markov MS, editors, page 1. - (3) REFLEX, 2004. Risk Evaluation of Potential Environmental Hazards from Low Frequency Electromagnetic Field Exposure Using Sensitive *in vitro* Methods. - (4) World Health Organization, 2007. ELF Health Criteria Monograph. Neurodegenerative Disorders, Page 187. - (5) TNO Physics and Electronics Laboratory, The Netherlands. 2003. Effects of Global Communication System radio-frequency fields on well-being and cognitive functions of human beings with and without subjective complaints. Netherlands Organization for Applied Scientific Research 1-63. - (6) Kheifets LI Afifi AA Buffler PA Zhang ZW. 1995. Occupational electric and magnetic field exposure and brain cancer: a meta-analysis. JOEM Vol 37, No. 2, 1327 1341. - (7) Green LM, Miller AB, Villeneuve PJ, Agnew DA, Greenberg ML, Li J, Donnelly KE. 1999. A
case-control study of childhood leukemia in southern Ontario Canada and exposure to magnetic fields in residences. Int J Cancer 82: 161–170. - (8) World Health Organization, 2007. ELF Health Criteria Monograph, page 256 and WHO Fact Sheet No. 322. - (9) Foliart DE Pollock BH Mezei G Iriye R Silva JM Epi KL Kheifets L Lind MP Kavet R. 2006. Magnetic field exposure and long-term survival among children with leukemia. British Journal of Cancer 94 161-164. - (10) Svendsen AL Weihkopf T Kaatsch P Schuz J. 2007. Exposure to magnetic fields and survival after diagnosis of childhood leukemia: a German cohort study. Cancer Epidemiol Biomarkers Prev 16(6) 1167-1171. - (11) Lowenthal RM, Tuck DM and Bray IC (2007) Residential exposure to electric power transmission lines and risk of lymphoproliferative and myeloproliferative disorders: a case-control study. Int Med J doi:10.1111/j.1445-5994.2007.01389.x - (12) Hill, AB. 1971. Principles of Medical Statistics Chapter XXIV. Statistical Evidence and Inference, Oxford University Press, Oxford University, Oxford, UK, p. 309-323. - (13)) Henshaw DL Reiter RJ. 2005. Do magnetic fields cause increased risk of childhood leukemia via melatonin disruption? A Review. Bioelectromagnetics Supplement 7, pages S86-S97. #### Some Quick Definitions for Units of Measurement of ELF and RF #### *Milligauss (mG) A milligauss is a measure of ELF intensity and is abbreviated mG. This is used to describe electromagnetic fields from appliances, power lines, interior electrical wiring. #### **Microwatts per centimeter squared (µW/cm2) Radiofrequency radiation in terms of power density is measured in microwatts per centimeter squared and abbreviated (μ W/cm2). It is used when talking about emissions from wireless facilities, and when describing ambient RF in the environment. The amount of allowable RF near a cell tower is 1000 μ W/cm2 for some cell phone frequencies, for example. #### ***Specific Absorption Rate (SAR is measured in watts per kilogram or W/Kg) SAR stands for specific absorption rate. It is a calculation of how much RF energy is absorbed into the body, for example when a cell phone or cordless phone is pressed to the head. SAR is expressed in watts per kilogram of tissue (W/Kg). The amount of allowable energy into 1 gram of brain tissue from a cell phone is 1.6 W/Kg in the US. For whole body exposure, the exposure is 0.8 W/Kg averaged over 30 minutes for the general public. International standards in most countries are similar, but not exactly the same. #### **OVERALL SUMMARY OF CONCLUSIONS** - The existing ICNIRP and FCC limits for public and occupational exposure to ELF and RF are insufficiently protective of public health. - Biologically-based public and occupational exposure standards for extra-low frequency and radiofrequency radiation are recommended to address bioeffects and potential adverse health effects of chronic exposure to ELF and RF. These effects are now widely reported to occur at exposure levels significantly below most current national and international limits. - A biologically-based exposure limit is one that is protective against ELF and RF intensity and modulation factors which, with chronic exposure, can reasonably be presumed to result in significant impacts to health and well-being. - Research is needed (but should not delay) regulatory action for ELF and <u>substantive</u> preventative action for RF proportionate to potential health and wellbeing risks from chronic exposure. - A biologically-based exposure limit should reflect current scientific knowledge of bioeffects and health effects, and impose new limits based on preventative action as defined by the Precautionary Principle (EEA, 2001). - Biologically-based exposure standards shall be protective against exposures levels of ELF and RF that affect or change normal biological functioning of organisms (humans). They shall not be based solely on energy absorption or thermal levels of energy input, or resulting tissue heating. They shall be protective against chronic exposure responses. - The existing standards are based on thermal (heating) limits, and do not address non-thermal (or low-intensity) exposures which are widely reported to cause bioeffects, some likely leading to adverse health effects with chronic exposure. - Biological effects may include both potential adverse health effects and loss of homeostasis and well-being. - Biologically-based exposure standards are needed to prevent disruption of normal body processes. Effects are reported for DNS damage (genotoxicity that is directly linked to integrity of the human genome), cellular communication, cellular metabolism and repair, cancer surveillance within the body; and for protection against cancer and neurological diseases. Also reported are neurological effects including impairment of sleep and sleep architecture, cognitive function and memory; depression; cardiac effects; pathological leakage of the blood-brain barrier; and impairment of normal immune function, fertility and reproduction. - Frequency, intensity, exposure duration, and the number of exposure episodes can affect the response, and these factors can interact with each other to produce different effects. In addition, in order to understand the biological consequences of EMF exposure, one must know whether the effect is cumulative, whether compensatory responses result, and when homeostasis will break down. - Plausible biological mechanisms that can account for genotoxicity (DNA damage) are already well known (oxidative damage via free-radical actions) although it should also be said that there is not yet proof. However, proof of mechanism is not required to set prudent public health policy, nor is it mandatory to set new guidelines or limits if adverse health effects occur at lower-than-existing IEEE and ICNIRP standards. #### OVERALL SUMMARY OF CONCLUSIONS (continued - The SCENIHR report (2007) states that "for breast cancer and cardiovascular disease, recent research has indicated that an association with EMF is unlikely." The WHO ELF Health Criteria Monograph (2007) states "The evidence does not support an association between ELF exposure and cardiovascular disease" and "(T)he evidence for breast cancer was also considered to be effectively negative, while for other diseases it was judged to be inadequate." Neither conclusion is supported by any finding by IARC that would classify EMF as Class 4 (Not A Carcinogen), so it is premature for either group to dismiss the evidence for EMF as a potential risk factor for either breast cancer or for cardiovascular disease. - The standard for taking action should be precautionary; action should not be deferred while waiting for final proof or causal evidence to be established that EMF is harmful to health and well-being. - There is great public concern over increasing levels of involuntary exposure to radiofrequency and ELF-modulated radiofrequency exposures from new wireless technologies; there is widespread public resistance to radiofrequency and extra-low frequency radiation exposures which are allowable under current, thermally-based exposure standards. - There is inadequate warning and notice to the public about possible risks from wireless technologies in the marketplace, which is resulting in adoption and use of technologies that may have adverse health consequences which are still unknown to the public. There is no "informed consent". - No positive assertion of safety can be made by governments that continue to support and enforce exposure limits for RF and ELF based on ICNIRP or IEEE criteria (or the equivalent). Governments that are considering proposals to relax existing RF and ELF standards should reject these proposals given the weight of scientific evidence that is available; and the clear disconnect between existing public safety limits and their responsibility to provide safe and healthful living environments for all segments of affected populations. ## **Section 5** Genotoxicity Based on Proteomics - EMF exposure can change gene and/or protein expression in certain types of cells, even at intensities lower than ICNIRP recommended values. - The biological consequences of most of the changed genes/proteins are still unclear, and need to be further explored. - The EMF research community should pay equal attention to the negative reports as to the positive ones. Not only the positive findings need to be replicated, all the negative ones are also needed to be validated. - The IEEE and WHO data bases do not include the majority of ELF studies (only 6 of 14 in the WHO; 0 of 16 in IEEE); they do include the majority of the RF studies (14 of 16). #### Section 6 Genotoxicity (DNA Damage from RF and ELF) - Toxicity to the genome can lead to a change in cellular functions, cancer, and cell death. One can conclude that under certain conditions of exposure RF is genotoxic. Data available are mainly applicable only to cell phone radiation exposure. One study reports that RF at levels equivalent to the vicinity of base stations and RF- transmission towers is genotoxic and could cause DNA damage (Phillips et al., 1998). - RF may be considered genotoxic (cause DNA damage). Of 28 total studies on radiofrequency radiation (RF) and DNA damage, 14 studies reported effects (50%) and 14 reported no significant effect (50%). Of 29 total studies on radiofrequency radiation and micronucleation, 16 studies reported effects (55%) and 13 reported no significant effect (45%). Of 21 total studies on chromosome and genome damage from radiofrequency radiation, 13 studies (62%) reported effects and 8 studies (38%) reported no significant effects. - During cell phone use, a relatively constant mass of tissue in the brain is exposed to radiation at relatively high intensity (peak SAR of 4 8 W/kg). Several studies have reported DNA damage at lower than 4 W/kg. - Since critical genetic mutations in one single cell are sufficient to lead to cancer and
there are millions of cells in a gram of tissue, it is inconceivable that the base of the IEEE SAR standard was changed from averaged over 1 gram of tissue to 10 grams. - Frequency, intensity, exposure duration, and the number of exposure episodes can affect the response, and these factors can interact with each other to produce different consequences. In order to understand the biological consequence of exposure, one must understand whether the effect is cumulative, whether compensatory responses result and when homeostasis will break down. The choice of cell type or organism studied can also influence the outcome. - Extremely-low frequency (ELF) has also been shown to be genotoxic and cause DNA damage. Of 41 relevant studies of genotoxicity and ELF exposure, 27 studies (66%) report DNA damage and 14 studies (44%) report no significant effect. #### **Section 7: Stress Response** - Scientific research on stress proteins has shown that the public is not being protected from potential damage that can be caused by exposure to EMF, both power frequency (ELF) and radio frequency (RF). - · Cells react to an EMF as potentially harmful by producing stress proteins (heat shock proteins or hsp). - Direct interaction of ELF and RF with DNA has been documented and both activate the synthesis of stress proteins. - The biochemical pathway that is activated is the same pathway in both ELF and RF and it is non-thermal. - Many biological systems are affected by EMFs (meaning both ELF and RF trigger stress proteins). - Many frequencies are active. Field strength and exposure duration thresholds are very low. - Molecular mechanisms at very low energies are plausible links to disease (e.g., effect on electron transfer rates linked to oxidative damage, DNA activation linked to abnormal biosynthesis and mutation). Cells react to an EMF as potentially harmful. - · Many lines of research now point to changes in DNA electron transfer as a plausible mechanism of action as a result of non-thermal ELF and RF. - The same biological reaction (production of stress proteins) to an EMF can be activated in more than one division of the EM spectrum. - Direct interaction of ELF and RF with DNA has been documented and both activate the synthesis of stress proteins. - Thresholds triggering stress on biological systems occur at environment levels on the order of 0.5 to 1.0 uT for ELF. - DNA damage (e.g., strand breaks), a cause of cancer, occurs at levels of ELF and RF that are below the safety limits. Also, there is no protection against cumulative effects stimulated by different parts of the EM spectrum. - The scientific basis for EMF safety limits is flawed when the same biological mechanisms are activated in ELF and RF ranges at vastly different levels of the Specific Absorption Rate (SAR). Activation of DNA to synthesize stress proteins (the stress response) is stimulated in the ELF at a non-thermal SAR level that is over a billion times lower than the same process activated by RF at the thermal level. - There is a need for a biological standard to replace the thermal standard and to also protect against cumulative effects across the EM spectrum. - Based on studies of stress proteins, the specific absorption rate (SAR) is not the appropriate measure of biological threshold or dose, and should not be used as a basis for a safety standard since it regulates against thermal effects only. #### **Section 8** Effects on Immune Function - Both human and animal studies report large immunological changes with exposure to environmental levels of electromagnetic fields (EMFs). Some of these exposure levels are equivalent to those of e.g. wireless technologies in daily life. - Measurable physiological changes (mast cells increases, for example) that are bedrock indicators of allergic response and inflammatory conditions are stimulated by EMF exposures. - · Chronic exposure to such factors that increase allergic and inflammatory responses on a continuing basis may be harmful to health. - It is possible that chronic provocation by exposure to EMF can lead to immune dysfunction, chronic allergic responses, inflammatory responses and ill health if they occur on a continuing basis over time. This is an important area for future research. - Specific findings from studies on exposures to various types of modern equipment and/or EMFs report over-reaction of the immune system; morphological alterations of immune cells; profound increases in mast cells in the upper skin layers, increased degranulation of mast cells and larger size of mast cells in electrohypersensitive individuals; presence of biological markers for inflammation that are sensitive to EMF exposure at non-thermal levels; changes in lymphocyte viability; decreased count of NK cells; decreased count of T lymphocytes; negative effects on pregnancy (uteroplacental circulatory disturbances and placental dysfunction with possible risks to pregnancy); suppressed or impaired immune function; and inflammatory responses which can ultimately result in cellular, tissue and organ damage. - Electrical hypersensitivity is reported by individuals in the United States, Sweden, Switzerland, Germany. Denmark and many other countries of the world. Estimates range from 3% to perhaps 10% of populations, and appears to be a growing condition of ill-health leading to lost work and productivity. - The WHO and IEEE literature surveys do not include all of the relevant papers cited here, leading to the conclusion that evidence has been ignored in the current WHO ELF Health Criteria Monograph; and the proposed new IEEE C95.1 RF public exposure limits (April 2006). - The current international public safety limits for EMFs do not appear to be sufficiently protective of public health at all, based on the studies of immune function. New, biologically-based public standards are warranted that take into account low-intensity effects on immune function and health that are reported in the scientific literature. #### Section 9 Neurology and Behavioral Effects - Effects on neurophysiological and cognitive functions are quite well established. - Studies on EEG and brain evoked-potentials in humans exposed to cellular phone radiation predominantly showed positive effects (i.e., positive means the exposure has the ability to change brainwave activity even at exposure levels where no effect would be expected, based on traditional understanding and safety limits). - There is little doubt that electromagnetic fields emitted by cell phones and cell phone use affect electrical activity in the brain. - The behavioral consequences of these neuroelectrophysiological changes are not always predictable and research on electrophysiology also indicates that effects are dependent on the mental load of the subjects during exposure, e.g., on the complexity of the task that a subject is carrying out. - Most of the studies carried out so far are short-term exposure experiments, whereas cell phone use causes long-term repeated exposure of the brain. - In most of the behavioral experiments, effects were observed after the termination of RF exposure. In some experiments, tests were made days after exposure. This suggests a persistent change in the nervous system after exposure to RF. - In many instances, neurological and behavioral effects were observed at a SAR less than 4 W/kg. This directly contradicts the basic assumption of the IEEE guideline criterion. - Caution should be taken in concluding that a neurological effect resulted solely from the action of RF on the central nervous system because it is well known that the functions of the central nervous system can be affected by activity in the peripheral nervous system. #### Section 10 Brain Tumors and Acoustic Neuromas - Studies on brain tumors and use of mobile phones for ≥ 10 years gave a consistent pattern of an increased risk for acoustic neuroma and glioma. - Cell phone use > 10 years give a consistent pattern of an increased risk for acoustic neuroma and glioma, most pronounced for high-grade glioma. The risk is highest for ipsilateral exposure. #### Section 10 Brain Tumors and RF - Epidemiology - Only a few studies of long-term exposure to low levels of RF fields and brain tumors exist, all of which have methodological shortcomings including lack of quantitative exposure assessment. Given the crude exposure categories and the likelihood of a bias towards the null hypothesis of no association, the body of evidence is consistent with a moderately elevated risk. - Occupational studies indicate that long-term exposure at workplaces may be associated with an elevated brain tumor risk. - Although the population attributable risk is low (likely below 4%), still more than 1,000 cases per year in the US can be attributed to RF exposure at workplaces alone. Due to the lack of conclusive studies of environmental RF exposure and brain tumors the potential of these exposures to increase the risk cannot be estimated. - Overall, the evidence suggests that long-term exposure to levels generally below current guideline levels still carry the risk of increasing the incidence of brain tumors. - Epidemiological studies as reviewed in the IEEE C95.1 revision (2006) are deficient to the extent that the entire analysis is professionally unsupportable. IEEEs dismissal of epidemiological studies that link RF exposure to cancer endpoints should be disregarded, as well as any IEEE conclusions drawn from this flawed analysis of epidemiological studies. #### **Brain Tumors and Acoustic Neuromas** #### Additional Data from Section 10 - Mobile phone use increases the risk of acoustic neuroma for persons using a mobile phone 10 years or longer by 30% (when used on both sides of head) to 240% (habitually used on one side of head). This information relies on a meta-analysis of several major studies. For acoustic neuroma studies by Lönn et al., (2004), Christensen et al., (2004) Schoemaker et al., (2005) and Hardell et al.,
(2006a) all giving results for at least 10 years latency period or more. Overall OR = 1.3, 95 % CI = 0.6-2.8 was obtained increasing to OR = 2.4, 95 % CI = 1.1-5.3 for ipsilateral mobile phone use (Lönn et al., 2004, Schoemaker et al., 2005). - There is observational support for the association between acoustic neuroma and the use of mobile phones since some studies report that the tumor is often located in an anatomical area with high exposure during calls with cellular or cordless phones (Hardell et al., 2003). - Mobile phone use increases the risk of brain tumors (glioma) for persons using a mobile phone 10 years or longer by 20% (when used on both sides of head) to 200% (habitually used on one side of head). This information relies on a meta-analysis of several major studies. For glioma OR = 1.2, [95 % CI = 0.8-1.9] was calculated (Lönn et al., 2005, Christensen et al., 2005, Hepworth et al., 2006, Schüz et al., 2006, Hardell et al., 2006b, Lahkola et al., 2007). Ipsilateral use yielded OR = 2.0, [95 % CI = 1.2-3.4] (Lönn et al., 2005, Hepworth et al., 2006, Hardell et al., 2007). - Cordless phone use is also associated with an increased risk for acoustic neuromas and brain tumors (both low-and high-grade gliomas (Hardell et al., 2006 a,b). - The increased risk of acoustic neuroma from use of a cordless phone for ten years or more was reported to be 310% higher risk (when the cordless phone habitually used on the same-side of the head) in Hardell et al., 2006a. - The increased risk of high-grade glioma from use of a cordless phone for ten years or more was reported to be 220% higher risk (when cordless used on both sides of head) to 470% higher risk (when cordless used habitually on same side of head) in Hardell et al., 2006b. - The increased risk of low-grade glioma from use of a cordless phone for ten years or more was reported to be 60% higher risk (when cordless used on both sides of head) to 320% higher risk (when cordless used habitually on same side of head) in Hardell et al., 2006b. - The current standard for exposure to microwaves during mobile phone use and for cordless phone use is not safe considering studies reporting long-term brain tumor risk. #### Section 11 Leukemia - The balance of evidence suggests that childhood leukemia is associated with exposure to power frequency EMFs either during early life or pregnancy. - Considering only average ELF (MF flux densities) the population attributable risk is low to moderate. However there is a possibility that other exposure metrics are much more strongly related to childhood leukemia and may account for a substantial proportion of cases. The population attributable fraction ranges between 1-4% (Kheifets et al., 2007); 2-4% (Greenland & Kheifets 2006); and 3.3% (Greenland, 2001) assuming only exposures above 3 to 4 mG (0.3 0.4 μ T) are relevant. However, if it is not average ELF (average MF flux density) that is the metric causally related to childhood leukemia the attributable fraction can be much higher. Up to 80% of childhood leukemia may be caused by exposure to ELF. - Other childhood cancers except leukemia have not been studied in sufficient detail to allow conclusions about the existence and magnitude of the risk. - IEEE guideline levels are designed to protect from short-term immediate effects, long-term effects, such as cancer are evoked by levels several orders of magnitudes below current guideline levels. - Measures should be implemented to guarantee that exposure due to transmission and distribution lines is below an average of about 1 mG (0.1 μ T) and precautionary measures are warranted that can reduce all aspects of exposure. #### Section 12 Melatonin, Alzheimers Disease and Breast Cancer - There is strong epidemiologic evidence that long-term exposure to ELF magnetic field (MF) is a risk factor for Alzheimers disease. - There is now evidence that 1) high levels of peripheral amyloid beta are a risk factor for AD and 2) medium to high MF exposure can increase peripheral amyloid beta. High brain levels of amyloid beta are also a risk factor for AD and medium to high MF exposure to brain cells likely also increases these cells' production of amyloid beta. - There is considerable *in vitro* and animal evidence that melatonin protects against Alzheimer's disease. Therefore it is certainly possible that low levels of melatonin production are associated with an increase in the risk of AD. - There are insufficient studies to formulate an opinion as to whether radiofrequency MF exposure is a risk factor for AD. - Some studies on EMF show reduced melatonin levels, There is sufficient evidence from *in vitro* and animal studies, from human biomarker studies, from occupational and light-at-night studies, and a single longitudinal study with appropriate collection of urine samples to conclude that high MF exposure may be a risk factor for breast cancer. - There is rather strong evidence from case-control studies that longterm, high occupational exposure (≥ 10 mG or $1.0 \,\mu\text{T}$)) to ELF magnetic fields is a risk factor for breast cancer. - Seamstresses are, in fact, one of the most highly MF exposed occupations, with exposure levels generally above 10 mG (1.0 μ T) over a significant proportion of the workday. They have also been consistently found to be at higher risk of Alzheimer's disease and (female) breast cancer. This occupation deserves attention in future studies. - There are no studies of RF magnetic fields on breast cancer that do not exclude ELF magnetic field, so that predictions of RF magnetic field alone on breast cancer cannot be assessed at this time. #### Section 13 Melatonin - Cell and Animal Studies - An association between power-frequency electromagnetic fields (ELF) and breast cancer is strongly supported in the scientific literature by a constellation of relevant scientific papers providing mutually-reinforcing evidence from cell and animal studies. - ELF at environmental levels negatively affects the oncostatic effects of both melatonin and tamoxifen on human breast cancer cells at common environmental levels of ELF exposure at 6 to 12 mG (0.6 to 1.2 μ T). Epidemiological studies over the last two decades have reported increased risk of male and female breast cancer with exposures to residential and occupational levels of ELF. Animal studies have reported increased mammary tumor size and incidence in association with ELF exposure. - ELF limits for public exposure should be revised to reflect increased risk of breast cancer at environmental levels possibly as low as 2 mG or 3 mG (0.2 to 0.3 μ T); certainly as low as 4 mG (0.4 μ T). #### Section 14 Effects of Modulation of Signal - There is substantial scientific evidence that some modulated fields (pulsed or repeated signals) are bioactive, which increases the likelihood that they could have health impacts with chronic exposure even at very low exposure levels. - Modulation signals may interfere with normal, non-linear biological processes. - Modulation is a fundamental factor that should be taken into account in new public safety standards; at present it is not even a contributing factor. - To properly evaluate the biological and health impacts of exposure to modulated RF (carrier waves), it is also essential to study the impact of the modulating signal (lower frequency fields or ELF-modulated RF). - .• Current standards have ignored modulation as a factor in human health impacts, and thus are inadequate in the protection of the public in terms of chronic exposure to some forms of ELF-modulated RF signals. - The current IEEE and ICNIRP standards are not sufficiently protective of public health with respect to chronic exposure to modulated fields (particularly new technologies that are pulse-modulated and heavily used in cellular telephony). #### Section 14 Effects of Modulation of Signal (continued) - The collective papers on modulation appear to be omitted from consideration in the recent WHO and IEEE science reviews. This body of research has been ignored by current standard setting bodies that rely only on traditional energy-based (thermal) concepts. - More research is needed to determine which modulation factors, and combinations are bioactive and deleterious at low intensities, and are likely to result in disease-related processes and/or health risks; however this should not delay preventative actions supporting public health and wellness. - If signals need to be modulated in the development of new wireless technologies, for example, it makes sense to use what existing scientific information is available to avoid the most obviously deleterious exposure parameters and select others that may be less likely to interfere with normal biological processes in life. - The current membership on Risk Assessment committees needs to be made more inclusive, by adding scientists experienced with the research reporting non-thermal biological effects. - The current practice of segregating scientific investigations (and resulting public health limits) by artificial divisions of frequency needs to be changed because this approach dramatically dilutes the impact of the basic science results and eliminates consideration of modulation signals, thereby reducing and distorting the weight of evidence in any evaluation process. #### **Section 15** Therapeutic Uses of EMF at Low-Intensity Levels - EMFs are both a cause of disease, and also used for treatment of disease (at levels far below existing public exposure standards). - Electromagnetic fields are widely used in therapeutic medical applications. - Proof of effectiveness has been demonstrated in numerous clinical applications of low-intensity ELF and RF. - EMFs have been shown to be effective in treating conditions of disease at energy levels far below current public exposure standards. - Indiscriminate EMF exposure is ill advised at even at common environmental levels. - Multiple sources of EMF
exposure in daily life, and cumulative exposures to potentially harmful combinations of EMF are ignored we don't even study it properly yet. ## **Section 16** The Precautionary Principle - The Precautionary Principle has been developed to help justify public policy action on the protection of health where there are plausible, serious and irreversible hazards from current and future exposures and where there are many uncertainties and much scientific ignorance. EMF is characterized by such circumstances. - The lessons from the histories of most well known hazards show that precautionary- based yet proportionate measures taken in response to robust early warnings can avoid the kinds of costs incurred by asbestos, smoking, PCBs ,X rays etc. Such lessons are relevant to the EMF issue. - Policymakers need to be aware of the systematic biases within the environmental health science against finding a true hazard, in order to not compromise scientific integrity. However, this bias can lead to the health of people or environments being compromised. - The Precautionary Principle introduces the use of different levels of proof (or strengths of evidence) to justify actions to reduce exposure, where the level of proof chosen depends upon the nature and distribution of the costs of being wrong in acting, or not acting; the benefits of the agent or substance in question; the availability of alternatives, etc. Waiting for high levels of scientific proof of causality, or for knowledge about mechanisms of action, can be very expensive in terms of compensation, health care, job losses, reductions in public trust of scientists etc. - The level of proof chosen to justify action does not determine any particular policy measure, or type of action. This is dependent on factors such as the costs of different measures, equity, the origins of the risk, ie voluntary or imposed, etc. - There is a need to involve stakeholders in helping to frame problems for risk assessments and to choose appropriate levels of proof and types of actions to reduce exposure. ## Section 17: Key Scientific Evidence and Public Health Policy Recommendations - We cannot afford 'business as usual" any longer. It is time that planning for new power lines and for new homes, schools and other habitable spaces around them is done with provision for low-ELF environments. The business-as-usual deployment of new wireless technologies is likely to be risky and harder to change if society does not make some educated decisions about limits soon. Research must continue to define what levels of RF related to new wireless technologies are acceptable; but more research should not prevent or delay substantive changes today that might save money, lives and societal disruption tomorrow. - New regulatory limits for ELF are warranted. ELF limits should be set below those exposure levels that have been linked in childhood leukemia studies to increased risk of disease, plus an additional safety factor. It is no longer acceptable to build new power lines and electrical facilities that place people in ELF environments that have been determined to be risky (at levels generally at 2 mG (0.2 µT) and above). - While new ELF limits are being developed and implemented, a reasonable approach would be a 1 mG (0.1 μ T) planning limit for habitable space adjacent to all new or upgraded power lines and a 2 mG (0.2 μ T) limit for all other new construction. It is also recommended for that a 1 mG (0.1 μ T) limit be established for existing habitable space for children and/or women who are pregnant. This recommendation is based on the assumption that a higher burden of protection is required for children who cannot protect themselves, and who are at risk for childhood leukemia at rates that are traditionally high enough to trigger regulatory action. This situation in particular warrants extending the 1 mG (0.1 μ T) limit to existing occupied space. "Establish" in this case probably means formal public advisories from relevant health agencies. - While it is not realistic to reconstruct all existing electrical distributions systems, in the short term; steps to reduce exposure from these existing systems need to be initiated especially in places where children spend time, and should be encouraged. - A precautionary limit of 0.1 μ W/cm2 (which is also 0.614 Volts per meter) should be adopted for outdoor, cumulative RF exposure. This reflects the current RF science and prudent public health response that would reasonably be set for pulsed RF (ambient) exposures where people live, work and go to school. This level of RF is experienced as whole-body exposure, and can be a chronic exposure where there is wireless coverage present for voice and data transmission for cell phones, pagers and PDAs and other sources of radiofrequency radiation. Some studies and many anecdotal reports on ill health have been reported at lower levels than this; however, for the present time, it could prevent some of the most disproportionate burdens placed on the public nearest to such installations. Although this RF target level does not preclude further rollout of WI-FI technologies, we also recommend that wired alternatives to WI-FI be implemented, particularly in schools and libraries so that children are not subjected to elevated RF levels until more is understood about possible health impacts. This recommendation should be seen as an interim precautionary limit that is intended to guide preventative actions; and more conservative limits may be needed in the future. #### Section 17: Key Scientific Evidence and Public Health Policy Recommendations (continued) - New public safety limits should be developed and implemented for ELF (50 Hz and 60 Hz electrical power frequencies). ELF limits should be set below those exposure levels that have been linked in childhood leukemia studies to increased risk of disease, plus an additional safety factor. - Guidance should be provided to electric utilities on the need to reduce ELF exposures in siting and construction of new power lines and substations. Mitigation of existing sources of ELF over 1 mG (0.1 μ T) should be encouraged, particularly where children and women who are pregnant, or who may be come pregnant spend significant portions of their time. - Requests for measurement and monitoring of ELF and RF should be provided by utilities (for power line and household ELF) and by employers (for workplace ELF and RF), and those who request information should receive full results of such surveys on request. - International health organizations and agencies should issue public health advisories for those exposed to levels of ELF and RF implicated with increased risks from cancer/neurodegenerative diseases and memory/learning/immune/stress responses. These advisories should address both residential and occupational exposures. - Reliable, unbiased information should be developed and distributed through a clearinghouse that is available to the public. Scientific, public health and policy option information should be provided for independent review at an affordable cost to the public. Research articles and prudent avoidance strategies should be made available in many languages. - Cell phones and other wireless devices should be redesigned to operate only on speaker-phone mode or text message mode. - Restrictions should be placed on the sale and advertising of cell phones and other wireless devices to children age 0 to 18 years. - All countries should continue to provide wired phone service; and should be strongly discouraged from phasing it out; including pay telephones in public places. - Manufacturers of devices that operate with wireless features should be required to carry SAR level information and warning labels on the outside packaging (not hidden inside). Wireless devices that create elevated RF levels for the user should be required to warn the user of possible adverse effects on memory and learning, cognitive function, sleep disruption and insomnia, mood disorders, balance, headache, fatigue, ringing in the ears (tinnitus), immune function, and other adverse symptoms of use. - Warning labels on cell phones and PDAs (personal digital assistant devices) and other wireless devices are needed to alert users to excessively high ELF emissions from the switching battery pack, and require labels to list mitigation measures to reduce exposure (do not wear on or near body in "ON-Receive" position; use only with earpiece or on speaker mode, etc). - Disclosure should be provided to the public on the location and operating characteristics of all wireless antenna sites in a fashion easily accessible to the public so informed choices can be made about where to live, shop, work and go to school. Such information should mandatorily include cumulative RF/MW exposures based on calculations from FCC OET Bulletin 65 (or equivalent) at ground level and second story level in increments of 50 feet outward from the facility to a power density of 0.1 μ W/cm2 or 0.614 V/m. Signage for the public should be a mandatory condition of approval for all sites, and should be kept current. Public agencies that approve and monitor wireless sites should require the applicant to identify locations of wireless facilities. ## Section 17: Key Scientific Evidence and Public Health Policy Recommendations (continued) - Mobile phone free and WI-FI-free public areas should be established in areas where the public congregates and can have a reasonable expectation of safety; including airports, public shopping, hospitals, libraries, medical clinics, convalescent homes and assisted living facilities, theatres, restaurants, parks, etc. - Health agencies and school districts should strongly discourage or prohibit cell towers on or near (within 1000' of) school properties, should delay any new WLAN installations in school classrooms, pre-schools and day-care facilities; and should either remove or disable
existing wireless facilities, or be required to offer classrooms with no RF exposure to those families who choose not to have their children involuntarily exposed. ## SECTION 2: STATEMENT OF THE PROBLEM #### **Background and Objectives** This Report is the product of an international research and public policy initiative to document what is known of biological effects that occur at low-intensity EMF exposures (for both radiofrequency radiation RF and power-frequency ELF, and various forms of combined exposures that are now known to be bioactive). The Report has been written to document the reasons why current public exposure standards for non-ionizing electromagnetic radiation are no longer good enough to protect public health. A working group composed of scientists, researchers and public health policy professionals (The BioInitiative Working Group) has joined together to document the information that must be considered in the international debate about the adequacy (or inadequacy) of existing public exposure standards. Recognizing that other bodies in the United States, United Kingdom, Australia, many European Union and eastern European countries as well as the World Health Organization are actively debating this topic, the BioInitiative Working Group has conducted a independent science and public health policy review process. ## **Objectives** - 1) To establish a working group - 2) To evaluate literature reviews for IEEE (2006) and WHO (2007) initiatives on standards that have resulted in (or continue to recommend) no change in thermally-based public exposure limits. - 3) To identify systematic screening-out techniques that consequently under-report, omit or overlook results of scientific studies reporting low-intensity bioeffects and/or potential health effects. - 4) To document key scientific studies and reviews that identify low-intensity effects for which any new human exposure standards should provide safety limits. - 5) To document key "chains of evidence" that must be taken into account in new human exposure standards (melatonin and free-radical production effects on DNA damage and/or repair; stress protein induction at low-intensity levels; etc.) - 6) To write a rationale for a biologically-based human exposure standard, individual. Current equilibrium thermodynamic models fail to explain an impressive spectrum of observed bioeffects at non-thermal exposure levels." Recent opinions by experts have documented deficiencies in current exposure standards. There is widespread discussion that thermal limits are outdated, and that biologically-based exposure standards are needed. Section 4 describes concerns expressed by WHO, 2007 in its Health Criteria Monograph; the SCENIHR Report, 2006 prepared for the European Commission; the UK SAGE Report, 2007; the Health Protection Agency, United Kingdom in 2005; the NATO Advanced Research Workshop in 2005; the US Radiofrequency Interagency Working Group in 1999; the US Food and Drug Administration in 2000 and 2007; the World Health Organization in 2002; the World Health Organization International Agency for Cancer Research (IARC, 2001), the United Kingdom Parliament Independent Expert Group Report (Stewart Report, 2000) and others. A pioneer researcher, the late Dr. Ross Adey, in his last publication in Bioelectromagnetic Medicine (P. Roche and M. Markov, eds. 2004) concluded: "There are major unanswered questions about possible health risks that may arise from exposures to various man-made electromagnetic fields where these human exposures are intermittent, recurrent, and may extend over a significant portion of the lifetime of the individual." "Epidemiological studies have evaluated and radiofrequency fields as possible risk factors for human health, with historical evidence relating rising risks of such factors as progressive rural electrification, and more recently, to methods of electrical power distribution and utilization in commercial buildings. Appropriate models describing these bioeffects are based in nonequilibrium thermodynamics, with nonlinear electrodynamics as an integral feature. Heating models, based in equilibrium thermodynamics, fail to explain an impressive new frontier of much greater significance. Though incompletely understood, tissue free radical interactions with magnetic fields may extend to zero field levels. (Adey, 2004) ## References Adey, WR. 2004. Potential Therapeutic Applications of Nonthermal Electromagnetic Fields: Ensemble Organization of Cells in Tissue as a Factor in Biological Field Sensing. Bioelectromagnetic Medicine. Rosch PJ and Markov MS, editors, page 1. IEEE Std C95.1TM-2005 (Revision of IEEE Std C95.1-1991) IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. I E E E 3 Park Avenue New York, NY10016-5997, USA Sponsored by the IEEE International Committee on Electromagnetic Safety (SCC39); 19 April 2006. WHO - World Health Organization 2007. Extremely low frequency fields. Environmental Health Criteria, Vol. 238. Geneva, Switzerland. ## SECTION 3: THE EXISTING PUBLIC EXPOSURE STANDARDS # The US Federal Communications Commission (FCC) Exposure Standard Recommendations In the United States, the Federal Communications Commission (FCC) enforces limits for both occupational exposures (in the workplace) and public exposures. The exposure limits are variable according to the frequency (in megahertz) and the duration of exposure time (6 minutes for occupational and 30 minutes for public exposures). Table 3.1 show exposure limits for occupational and uncontrolled public access to radiofrequency radiation such as is emitted from AM, FM, television and wireless sources through the air. As an example, 583 microwatts/cm2 (μ W/cm2) is the public limit for the 875 MHz cell phone wireless frequency and 1000 μ W/cm2 is the limit for PCS frequencies in the 1800 – 1950 MHz range averaged over 30 minutes. The limits in Table 3.1 would pertain to exposures in the vicinity of transmitting antennas (not devices like cell phones, for which exposure limits are shown in Table 3.2). The FCC is required by the National Environmental Policy Act of 1969 to evaluate the effect of emissions from FCC-regulated transmitters on the quality of the human environment. At the present time there is no federally-mandated radio frequency (RF) exposure standard. However, several non-government organizations, such as the American National Standards Institute (ANSI), the Institute of Electrical and Electronics Engineers, Inc. (IEEE), and the National Council on Radiation Protection and Measurements (NCRP) have issued recommendations for human exposure to RF electromagnetic fields. The FCC has endorsed these recommendations, and enforces compliance. http://www.fcc.gov/oet/rfsafety/ Table 3.1 FCC LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE) ## (A) Limits for Occupational/Controlled Exposure | Frequency
Range (MHz) | Electric Field
Strength (E)
(V/m) | Magnetic Field
Strength (H)
(A/m) | Power Density (S) (mW/cm2) | Averaging
Time [E] ² [H] ²
or S (minutes) | |--------------------------|---|---|----------------------------|---| | 0.3-3.0 | 614 | 1.63 | (100)* | 6 | | 3.0-30 | 1842/f | 4.89/f | $(900/f_2)^*$ | 6 | | 30-300 | 61.4 | 0.163 | 1.0 | 6 | | 300-1500 | | | f/300 | 6 | | 1500-100,000 |) | | 5 | 6 | ## (B) FCC Limits for General Population/Uncontrolled Exposure | Frequency
Range (MHz) | Electric Field
Strength (E)
(V/m) | Magnetic Field
Strength (H)
(A/m) | Power Density (S) (mW/cm2) | Averaging
Time [E] ² [H] ²
or S (minutes) | |--------------------------|---|---|----------------------------|---| | 0.3-3.0 | 614 | 1.63 | (100)* | 30 | | 3.0-30 | 824/f | 2.19/f | $(180/f_2)^*$ | 30 | | 30-300 | 27.5 | 0.073 | 0.2 | 30 | | 300-1500 | | | f/1500 | 30 | | 1500-100,000 |)
 | | 1.0 | 30 | f = frequency in MHz NOTE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2: *General population/uncontrolled* exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure. Source: OET, 1997. ## FCC Guidelines for Cell and PCS Phones (and other radiofrequency emitting ^{*}Plane-wave equivalent power density ## devices) Cell phones and portable transmitting devices that operate in the Cellular Radiotelephone Service, the Personal Communications Services (PCS), the Satellite Communications Services, the Maritime Services (ship earth stations only) and the Specialized Mobile Radio (SMR) Service are subject to routine environmental (not health) evaluation for RF exposure prior to equipment authorization or use by the FCC. Section 2.1093 of the FCC's Rules (47 CFR §2.1093) that apply to "portable" devices. For purposes of these requirements a portable device is defined as a transmitting device designed to be used so that the radiating structure(s) of the device is/are within 20 centimeters of the body of the user (OET, 1997). Cell phones and some other wireless communication devices are regulated by the FCC according to their
emissions, which depend on the amount of power absorbed into the body. The metric for measurement is specific absorption rate (SAR) and is expressed in watts per kilogram of tissue. The limit for absorption of radiofrequency radiation is limited to 1.6 W/kG within 1 gram of human tissue. This limit has been recommended for change (relaxation) by the IEEE in April of 2006. If adopted by the FCC, this amount of heat or 1.6 W/kg would be measured over 10 times as much tissue (10 grams) so that far higher heating is possible from these devices over small amounts of tissue (would be far less strict that the current limit, if adopted). More cell phone and related PDA devices would then comply be able with the looser standard, and the public could potentially receive much higher radiofrequency radiation exposures, and it would be in compliance (legal). "The SAR criteria to be used are specified below and apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. The limits used for evaluation are based generally on criteria published by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1-1992. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814." (1) FCC Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment (OET, 1997). (2) FCC Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure (OET, 1997). In the United States, two professional societies - the Institute of Electrical and Electronics Engineers, Inc. (IEEE) and the National Council for Radiation Protection and Measurements (NCRP) develop recommendations for safety standards. The IEEE charter calls itself the world's leading professional association for the advancement of technology, as well as the instigator of public safety standards. The IEEE recommendations have historically been endorsed by the American National Standards Institute (ANSI) and finally considered by the FCC for implementation. The US Federal Communications Commission (FCC) may then take the recommendations and adopt them as mandatory exposure limits. Several standard-setting processes have occurred like this in the last few decades. The most recent IEEE recommendations for 3 kHz to 300 GHz were developed in 2006 (IEEE, 2006). Rather than lower the existing limits for radiofrequency and microwave radiation exposure, they greatly increase the exposure limits. This is perplexing since it ignores or discounts a large body of scientific evidence clearly documenting biologically-relevant changes at levels LOWER (much lower) than the existing standards. ## ICNIRP Guidelines (International Radiofrequency Guidelines) In April 1998, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) published guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields in the frequency range up to 300 GHz.. These guidelines replaced previous advice issued in 1988 and 1990. The main objective of the ICNIRP Guidelines is to establish guidelines for limiting EMF exposure that will provide protection against known adverse health effects (ICNIRP, 1998). An adverse health effect is defined by ICNIRP as one which causes detectable impairment of the health of the exposed individual or of his or her offspring; a biological effect, on the other hand, may or may not result in an adverse health effect. The guidelines presented in Table 3.2 apply to occupational and public exposure. Table 3.2 ICNIRP Basic restrictions for time varying electric and magnetic fields for frequencies up to 10 GHz. | Exposure
characteristics | Frequency range | Current
density
for head and
trunk (mA
m ₁₂)(rms) | Whole-body
average
SAR (W kg₁) | Localized SAR
(head and
trunk) (W kg ₁) | Localized
SAR
(limbs)
(W kg _: 1) | |-----------------------------|--|---|--------------------------------------|---|--| | Occupational | up to 1 Hz | 40 | _ | - | | | exposure | 1–4 Hz | 40/f | _ | _ | _ | | | 4 Hz–1 kHz | 10 | _ | _ | | | | 1–100 kHz
100 kHz–10 MHz
10 MHz–10 GHz | f/100
f/100 | 0.4
0.4 | 10
10 | 20
20 | | General public | up to 1 Hz | 8 | | _ | _ | | exposure | 1–4 Hz | 8/f | _ | | | | • | 4 Hz-1 kHz | 2 | | | _ | | | 1–100 kHz
100 kHz–10 MHz
10 MHz–10 GHz | f/500
f/500 | 0.08
0.08 | | | #### Notes: 1. f is the frequency in hertz. In the frequency range from a few Hz to 1 kHz, for levels of induced current density above 100 mA m $^{\circ}$, the thresholds for acute changes in central nervous system excitability and other acute effects such as reversal of the visually evoked potential are exceeded. In view of the safety considerations above, it was decided that, for frequencies in the range 4 Hz to 1 kHz, occupational exposure should be limited to fields that induce current densities less than 10 mA m $^{\circ}$, i.e., to use a safety factor of 10. For the general public an additional factor of 5 is applied, giving a basic exposure restriction of 2 mA m $^{\circ}$. Below 4 Hz and above 1 kHz, the basic restriction on induced current density increases progressively. ^{2.} Because of electrical inhomogeneity of the body, current densities should be averaged over a cross-section of 1 cm² perpendicular to the current direction. ^{3.} For frequencies up to 100 kHz, peak current density values can be obtained by multiplying the rms value by %2 (~1.414). For pulses of duration t_p the equivalent frequency to apply in the basic restrictions should be calculated as $f = 1/(2t_p)$. For frequencies up to 100 kHz and for pulsed magnetic fields, the maximum current density associated with the pulses can be calculated from the rise/fall times and the maximum rate of change of magnetic flux density. The induced current density can then be compared with the appropriate basic restriction. ^{4.} All SAR values are to be averaged over any 6-minute period. ^{5.} Localized SAR averaging mass is any 10 g of contiguous tissue; the maximum SAR so obtained should be the value used for the estimation of exposure. ^{6.} For pulses of duration t_0 the equivalent frequency to apply in the basic restrictions should be calculated as $f = 1/(2t_0)$. Additionally, for pulsed exposures, in the frequency range 0.3 to 10 GHz and for localized exposure of the head, in order to limit or avoid auditory effects caused by thermoelastic expansion, an additional basic restriction is recommended. This is that the SA should not exceed 10 mJ kg² for workers and 2 mJ kg² for the general public averaged over 10 g tissue. ICNRP maintains that guidelines for limiting exposure have been developed following a thorough review of all published scientific literature (ICNIRP, 1998). "The criteria applied in the course of the review were designed to evaluate the credibility of the various reported findings (Repacholi and Stolwijk 1991; Repacholi and Cardis 1997); only established effects were used as the basis for the proposed exposure restrictions. Induction of cancer from long-term EMF exposure was not considered to be established, and so these guidelines are based on short-term, immediate health effects such as stimulation of peripheral nerves and muscles, shocks and burns caused by touching conducting objects, and elevated tissue temperatures resulting from absorption of energy during exposure to EMF. In the case of potential long-term effects of exposure, such as an increased risk of cancer, ICNIRP concluded that available data are insufficient to provide a basis for setting exposure restrictions, although epidemiological research has provided suggestive, but unconvincing, evidence of an association between possible carcinogenic effects and exposure at levels of 50/60 Hz magnetic flux densities substantially lower than those
recommended in these guidelines. In-vitro effects of shortterm exposure to ELF or ELF amplitude-modulated EMF are summarized. Transient cellular and tissue responses to EMF exposure have been observed, but with no clear exposure-response relationship. These studies are of limited value in the assessment of health effects because many of the responses have not been demonstrated in vivo. Thus, in-vitro studies alone were not deemed to provide data that could serve as a primary basis for assessing possible health effects of EMF. "(ICNIRP, 1998) http://www.icnirp.de ## **Guidelines and Limits (Other Countries)** On the other hand, some countries in the world have established new, low-intensity based exposure standards that respond to studies reporting effects that do not rely on heating. Consequently, new exposure guidelines are hundreds or thousands of times lower than those of IEEE and ICNIRP. Table 3.3 shows some of the countries that have lowered their limits, for example, in the cell phone frequency range of 800 MHz to 900 MHz. The levels range from 10 microwatts per centimeter squared in Italy and Russia to 4.2 microwatts per centimeter squared in Switzerland. In comparison, the United States and Canada limit such exposures to only 580 microwatts per centimeter squared (at 870 MHz) and then averaged over a time period (meaning that higher exposures are allowed for shorter times, but over a 30 minute period, the average must be 580 microwatts per centimeter squared or less at this frequency). The United Kingdom allows one hundred times this level, or 5800 microwatts per centimeter squared. Higher frequencies have higher safety limits, so that at 1000 MHz, for example, the limit is 1000 microwatts per centimeter squared (in the United States). Each individual frequency in the radiofrequency radiation range needs to be calculated. These are presented as reference points only. Emerging scientific evidence has encouraged some countries to respond by adopting planning targets, or interim action levels that are responsive to low-intensity or non-thermal radiofrequency radiation bioeffects and health impacts.